PHÍ TRỌNG HẢO - NGUYỄN THANH MAI

KỸ THUẠT

PHÍ TRỌNG HẢO - NGUYỄ THANH MAI

KY̌ THUẬT NGUỘı

Lò̀i nóí đầu

Nguội là công việc thường thấy trong các quy trình công nghệ của các công đoạn sản xuất trong lĩnh vực chế tạo máy và gia công các sản phẩm cơ khí.

Với công cụ cầm tay và tay nghề, người thợ có thể dùng phương pháp gia công nguội để thực hiện từ những công việc đơn giản đến những công việc phức tạ̣ đỏi hỏi độ chính xác cao mà các máy móc, thiết bị không thực hiện được nhự: sửa nguội khuôn, dụng cụ; sửa chữa, lắp ráp ...

Cuốn sách này giới thiệu những kiến thức cơ bản trong kỹ thuật lấy dấu, các phương pháp gia công nguội, tư thế khi thao tác, kỹ thuật thực hiện, dụng cụ và gá lắp thường dùng, biện pháp đánh giá, kiểm tra, những sai sót hư hỏng có thể xảy ra và các biện pháp khắc phục...

Để thực hành tốt công việc nguội, đòi hỏi người làm công việc nguợi phải chảm chỉ, cẩn thận, biết phân tích xét đoán và sáng tạo để có thể vận dụng được các kiến thức trong các tình huống công việc cụ thể.

Trong tình hình hiện nay, khi đọi ngũ cán bộ còn nặng về lý thuyết, thợ giôi còn thiếu, thì việc có được một người thợ nguội lành nghề là nhu cầu của rất nhiều doanh nghiệp sản xuất.

Sách giới thiệu những kiến thức cơ bản, phổ thông, dể hiểu, dể ứng dụng, có thể làm tài liệu học tập cho học sinh các trường Trung học chuyên nghiệp và Dạy nghề, làm tài liệu tham khảo cho sinh viên các trường Cao đẳng và Đại học của khối kỹ thuật.

Mậc dù các tác giả đã cố gắng trong khi biên soạn, nhưng chắc không tránh khỏi những sai sót. Chúng tôi rất mong nhận được những y kiến đóng góp của bạn đọc và đồng nghiệp. Các ý kiến góp ý xin gửi về Bộ môn Công nghệ chế tạo máy,Trường Đại học Bách khoa Hà Nội hoặc Công ty Cổ phần Sách Đại học - Dạy nghề, 25 Hàn Thuyên - Hà Nội. .

Chương 1
 TỔ CHỨC CHỖ LÀM VIẸC VÀ KŶ THUẬT AN TOȦN LAƠ ĐỘNG

1.1. TỚ CHỨC LAO DỢNG CHÕ̃ LAM VIẸCC NGUỢ।

Nguọi là nguyen công gia công kim loại nhờ sử dụng những dụng cụ đơn giản đế tạo nên hình dáng, kích thước chi tiết theo yeu câu.

Trong cơng việc nguội, ngoài một só việc được co khí hoá (dùng máy để gia công), còn hầu hết được sử dụng bằng tay, chất lượng gia công phụ thuộc vào tay nghể của công nhân.

Nguội có ưu điểm là có thể gia công dược bề mặt chi tiết mà bề mặt đó khó gia công trên máy công cụ nhờ sử dụng các dụng cụ đơn giản, dể chể tạo, có the đạt được chất lượng gia công, ví dụ: sửa nguọi khi lấp ráp.

Để bảo đảm chấ lượng gia công khi nguọi, cần chú ý tở chức chô làm việc hợp lý khi nguội.

Tổ chức chổ làm việc là bớ trí các trang thiết bị, dụng cụ, chi tiết sao cho thao tác khi làm việc được thuận tiện, tốn ít sức, áp dụng được các phương pháp tở chức lao động tiên tiến, cơ khí hoá quá trình lao động, bảo dảm chất lượng sản phẩm và năng suất lao động cao.

Khi tổ chức chố làm việc cần chú ý các yêu cầu sau:

1. Tại các chỗ làm việc chỉ bố trí các vật dựng cần thiết, xếp đạ̣t chúng theo thứ tự nhất định để thực hiện công việc dược giao một cách hợp lýy uhất.
2. Dụng cụ, chi tiết gia công, các trang bị khác cần bố trí cho phù hợp với thao tác khi làm việc, những vật dụng thuờng xuyên sử dụng khi thao tác cần đặt ở vị trí gần, đễ lấy (hình 1.1). Ví dụ: búa để bên phía tay phải, đục đẻ̉ phía bên trái...
3. Dụng cụ dùng bằng hai tay cần để gần nguời thợ, phía trước mặt để dễ lấy khi thao tác.
4. Dụng cụ, đồ gá, chi tiết gia công khi bớ trí trong các ngăn hộp cần theo nguyên tá́c: vật nhỏ hay dùng nên để ở bên trên, vạt lớn, nặng, ít dùng để ở phía dưới.
5. Những dụng cụ chính xác, dụng cụ đo nên bảo quản trong các hộp gỗ, bao bì riêng.
6. Sau khi ké́t thúc công việc, dụng cụ được làm sạch, để đúng chổ quy định, riêng dụng cụ đo cần bôi lên một lớp dâu mỏng để bảo quản.

Chở làm việc của ngươi thọ nguợi thơng thường là bàn nguọí. Bàn nguợi có chiều cao $800-900 \mathrm{~mm}$, chiểu rộng $700-800 \mathrm{~mm}$, chiều dài $1200-$ 1500 mm . Tuỳ theo yêu câu cơng viẹc, trên bàn nguọi co thể bó trí một ch δ làm viẹc cho mọt người thợ hoạc nhiéúu chở làm viẹc cho nhiếu người thộ. Khi bố trí trên bàn ngựí có nhiéu chở làm việc cân chú ý sao cho công viẹ̣c ở các chỡ làm việc đơ khơng ành hường đến chât lượng công việc của nhau. Ví dụ: khơng bơ trí trên cùng bàn nguọi vừa chơ các cơng viẹc yêu cấu chính xác (láy dáu, cạo...) vừa cho các cơng việc (đục, tán...) co thể ảnh hưởng dến cong viẹc chính xác kể tren.

Nhüng vatt it düng đđ̆t $x a \operatorname{hon}$
Nhüng vạt hay düng. dăt gân hon

Hình 1.1. Bố trí bàn nguội
Khi chọn chiều cao êtô (bàn kẹ̣) cần chú ý sao cho phù hợp. Khoảng cách từ mặt làm việc của êtô tới cằm người thợ bằng một tầm chống tay (hình 1.2).

Để phù hợp với tầm vóc người thợ, có thể bớ trí bục công tác (hình 1.3) để người thợ có tầm vóc nhỏ bế có thể đứng lên khi thao tác. Tuy nhiên việc bố trí bục công tác có thể ảnh hưởng tới diện tích mặt bằng sản xuất, tới quá trình vận chuyển...

Hinh 1.3. Bठ trí bục cồng tác khi giõa

Bàn nguọi trong một sớ trường hợp có cơ cấu điều chỉnh chiều cao (hình 1.4). Khi đó mõi chân bàn bao gồm đế 1 , trên đó có dịnh vít cấy 2 , đai ớc điều chỉnh 3 hàn cơ định với chân 4 để điều chinh chiếu cao bàn nguợi. Kết cấu này cho phép diêu chinh chiếu cao bàn từ $50-250 \mathrm{~mm}$.

Hinh 1.4. Bàn nguội có co cấu điều chỉnh chiều cao
a) Bàn nguội; b) Cơ cắu điều chỉnh chiều cao;

1-Chån đế; 2-Trục vit; 3- Đai ốc; 4-Chân bàn.

Êtô nguợi: Êtô nguội là cọ̣ cấu dùng để kẹp chạat chi tiết gia công ở vị trí cần thiết trong quá trình nguội.

Theo kết cấu, êtô nguội có nhiều loại: - Loại mỏ kẹp (hình 1.5) gồm má cố định 3, má động 4, trên êtô có tấm 1 để bắt chặt êtô lên bàn. Phần thân 8 dược gới lên tấm đỡ 10 bằng gổ và kẹp chặt nhờ bu lông vòng 9 . Khi quay tay quay 6 , qua ren vít 5 và đai ớc 2 để kẹp chặt và tháo chi tiết. Lò xo lá 7 giúp má etô tự mở khi quay tay quay ra dể tháo chi tiết.

Loại mỏ kẹp có ưu điểm: kết cấu đơn giản, kẹp chặt, thường dùng cho các công việc nguội cần lực kẹp lớn (dục, tán, uốn...). Chiều rộng của má mỏ kẹp có các loại $100,130,150,180 \mathrm{~mm}$.

Nhược điểm của loại mỏ kẹp này là: bề mặt kẹp phôi khó bảo đảm tiếp xúc đều, khi kẹp chi tiết theo chiều dày, mỏ kẹp chỉ tiếp xúc ở phía dưở, (hị̀nh 1.5 b), khi kẹp chi tiét theo chiều rộng mò kẹp chil tiếp xúc ở phía trén (hình 1.5 c), độ cựng vừng khi kẹp chặt không cao, dể tạo vết trên chi tiêt.

Hình 1.5. Mỏ kep
a) Hinh dạng chung; b) Kẹp chỉ ở phía dướ; c) Kẹp chĩ ở phía trên;

1- Tấm đ̛̣́ ; 2- Đai ớc; 3-Má tînh; 4-Má động; 5-Trục vit; 6-Tay quay;
7- Lò xo: 8- Thån; 9- Bu-lo̊ng vòng; 10- Tăm đ̃.

Loại êtô có hai má song song thường có hai kiểu: ĉiô có bàn quay và etố không có bàn quay.

- Kiểu êtô có bàn quay (hình 1.6 a) bao gồm bàn cớ định được kẹp chặt trên bàn nguội, phần thân êtô 4 được lấp trên bàn cố định, có thể quay xung quanh tâm bàn cố dịnh và giư chặt vị trí sau khi quay nhờ bu lông dưa vào rãnh vòng 12 dạng chữ T. Khi quay tay quay 5 , qua cơ cấu vít me - đai ớc làm má động 6 đi vào và cùng với má tĩnh 8 kẹp chặt chi tiét.

Hinh 1.6. Etó có hai má song song
a) Loạl có bàn quay

1-Lỗ lâp vào bàn nguội ; 2-Bu lông; 3-Bàn cố định; 4-Bàn quay;
5- Tay quay; 6-Má động; 7-Miéng kẹp; 8-Má tīnh; 9- Dal ớc; 10 - Vít me; 11-Bu lông kẹp; 12-Rãnh T.
b) Loại không có bàn quay

13- Thân; 14- Miéng lớt; 15-Tay quay; 16-Má động; 17-Má tïnh; 18-Vít me; 19-Sống trự̛̣t; 20- Đai óc.

Êtô được chế tạo từ gang xám, riêng ở vị trí hai má êtô, nợi kẹp chi tiết được lắp thêm hai bản thép 7 có khía rãnh mặt đầu, làm từ thép các bon dụng cụ (Y7), tồi cứng để kẹp chi tiết được chắc và bảo đảm độ bền của êtô.

Êtô quay được chế tạo có chiều rộng má êtô 80 và 140 mm , độ mở lớn nhắt của hai má $95-180 \mathrm{~mm}$.

- Kiểu êtô không có bàn quay (hình 1.6 b), phần đế của êtô có các lỗ để đưa bu lông vào lăp trực tiếp lên bàn nguội. Êtô gồm thân đế 13 , má tĩnh 17 , má động 16 , sống trượt dẵn hướng 19. Khi quay tay quay 15 , thông qua cơ cá́u vít me 18 , đai $\sigma c 20$ và miếng lót 14 sẽ đưa má động ra, vào để tháo, kẹp chi tiết.

Êto loại này được chế tạo có độ mở lớn nhât của hai má là $45,65,95$, 180 mm , chiều rộng má etô là $60,80,100$ và 140 mm .

Êto nguọi là cơ cấu kẹp chạt rât thông dụng và tiẹn dụng cho các công việc nguộ, nhưng có nhược diêm là độ bền má kẹ̣p khơng cao, nên các cơng việc nặng, düng lực lớn thương fit dùng etơ dể kẹp chạt.

Khi sử dụng etô nguộ cân chú y:

1. Trước khi thao tác trên etô cần kiểm tra xem eto đã được kẹp chắc chắn trên bàn nguọi.
2. Không sử dụng etoo ngựi làm các công việc như chạt, nân, uón dùng búa vơi lực lơn, vì co thể phá hỏng eto.
3. Khi kẹp chặt chie tiét trên êto, tránh dùng cánh tay đòn kẹp lớn, dài, tránh dùng xung lực để kẹp vì có thế phá hòng vít me hoạc đai ớc của eto.
4. Sau khi két thúc cong viẹc trên êto, dùng bàn chải, gié làm sạch phoi, vêt bânn; bôi dâu ở các phàn trượt vạ̀ phần ren vít.
5. Khi khơng làm viẹc, giữa hai má eto cẩn có khe hở $4-5 \mathrm{~mm}$. Khong nên văn cho hai má ép chạt vào nhau vil dé phât sinh ứng suât ảnh hương dến môi lắp ghép vit me - dai óc.
6. Để tránh gay biến dạng, vế trên bé mạt chi tiết, khi kẹp trên etô nên sử dụng các miêng đẹm bằng kim loại mềm đật lên má atoo trước khi kẹp chi tiết.

Hinh 1.7. Etô tay
Êto tay (hình 1.7) dùng để kẹp chi tiết có kích thước không lớn bằng ren vít, sau đó dùng tay giữ êtô để gia công (giũa, khoan...).

Kích thước của êtô tuỳ thuộc vào chi tiết cần kẹp và tính chất của công việc. Thông thường, êtô tay có chiều dài $125-150 \mathrm{~mm}$, chiều rộng mỏ kẹp 40 và 44 mm .

1.2. AN TOÀN LAO ĐỘNG KHI NGUỘ।

Người lao động trước khi làm việc phải được học về an toàn lao động.

Khi vào làm việc ở các xưởng sản xuất phải tuân theo các quy định, nội quy về an toàn lao động trong phân xưởng.

Những nguy cơ gây tai nạn lao động trong xương cơ khí có rất nhiều: từ các chỉ tiết gia công có trọng lượng lớn, phoi kim loại, cạnh sấc trên chi tiết; từ các bộ phận máy, dụng cụ khi quay, dịch chuyền; từ những phương tiẹn vận chuyển như xe dẩy, bảng tải ở dươi đất, cấu trục ở trên cao; từ những nguy cơ trong các mạng điện, cơ cá̛u điều khiển điện, việc nối mát thiết bị...

Sau đây sẽ giới thiệu các quy định bảo đảm an toàn lao động:
Trước khi làm việc cần phải:

1. Quần áo, đầu tóc gọn gàng, không gây nguy hiểm do vướng mắc, khi lao động phải sử dụng các trang bị bảo hợ: quần áo, mũ, giày dép, kính bảo hộ...
2. Bố trí chỗ làm việc cơ khoảng khơng gian để thao tác, được chiếu sáng hợp lý, bớ trí phôi liệu, dụng cụ, gả lắp để thao tác được thuận tiện, an toàn.
3. Kiểm tra dụng cự, gá lắp trước khi làm việc: bàn ngựị kê chắc chắn, êtô kẹp chặt trên bàn nguọ̣i, các dưng cụ như búa, đục, cưa...được lắp chắc chắn.
4. Kiểm tra độ tin cậy, an toàn của các phương tiện nâng chuyển khi gia công vật nặng, độ an toàn của các thiết bị điện.

Trong thờ gian làm viẹc:

1. Chi tiết phải được kẹp chắc chắn trên êtô, tránh nguy cơ bị tháo lỏng, rơi trong quá trình thao tác.
2. Dùng bàn chải làm sạch chi tiết gia công và phoi, mạt thép, vảy kim loại trên bàn nguội (không được dùng tay làm các công việc trên).
3. Khi dùng đục chặt, cắt kim loại cần chú ý hướng kim loại rơi ra để tránh hoặc dùng lưới, kính bảo vệ.

Khi kết thicc công việc:

1. Thu dọn, xếp đặt gọn gàng lại chỗ làm việc.
2. Để dụng cụ, gá lắp, phôi liệu vào đúng vị trí quy định.
3. Các chất dễ gây cháy như dầu thừa, giẻ dính dầu... cần thu dọn vào các thùng sắt, để ở chổ riêng biệt.

Câu hỏi

1. Thế nào là tổ chức chỗ làm việc khi nguội? Những yêu cầu cần bảo đảm khi tổ chức chô làm việc?
2. Khi bố trí bàn nguội cần chú ý những vấn đề gì?
3. Các loại êtô nguội? Phạm vi sử dụng của từng loại?
4. Những điểm cần chú ý khi sử dụng êtô nguội?
5. Trình bày các quy dịnh về an toàn lao động trước khi làm việc, trong khi làm việc và sau khi kết thúc công việc.

Chương 2

LẤY DẤU VÀ KỸ THUẬT VẠCH DẤU

2.1. KHÁl NIỆM

Trong sản xuất đơn chiếc và loạt nhỏ, khi số lượng chi tiết phải chế tạo không lớn, chủng loại nhiều, phôi của các chi tiết này có nhiều loại được chế tạo từ phương pháp đúc trong khuôn cát, làm khuôn bằng tay, hoạc rèn tự do hay trong khuôn đơn giản. Vì thế vị trí tương quan giữa các bề mặt của phôi khōng chính xác.

Khi gia công cơ khí phải hớt đi một lớp kim loại (lượng dư) để tạo thành hình dáng, kích thước của chi tiết gia công. Để bảo đảm các bề mặt của phôi có đủ lượng dư để gia công, khi phôi chế tạo không chính xác, nên trước khi gia công ta phải lấy dấu để chia tương đối lượng dự cho các bề mặt trước khi gia công.

Ngoài ra lấy dấu còn dùng để xác định vị trí của bề mặt sẽ gia công bầng phương pháp nguội hoặc bằng cắt gọt so với các bề mạat đã gia công trước đó để bảo đảm vị trí tương quan của các bề mặt sẽ gia công so với các bề mặt đã gia công.

Lấy dấu là dùng dụng cụ vạch trên chi tiết các đường vạch dấu để xác dịnh rõ vị trí các bể mặt, các kích thước cần gia công theo các yêu cầu cho trong bản vẽ chi tiết cần chế tạo.

Cảc dạng lấy dấu: Láy dấu gồm các dạng: lây dấu phả̉ng và lấy dấu khối.
Lấy dấu phẳng là lấy dấu trên tấm phẩng, trên mặt phẳng các chi tiết đúc, rèn hoặc cán.

Lấy dấu khối là vạch dấu không chỉ trên một mặt phả̉ng mà trên các mặt phả̉ng ở các vị trí, các góc độ khác nhau trong không gian của vật cần gia công.

Lấy dấu khối thường dùng để chia lượng dư một cách tương đối đều cho các mặt phôi đức, rèn để bảo đảm đủ lượng dư cho các bề mặt khi cắt gọt.

Trước khi lấy dấu khối phải làm sạch nhựng vết bả̉n, gỉ, gờ vẩy kim loại trên vật rèn, vết cát, gờ kim loại trên vật đúc. Sau khi làm xong công tác chuẩn bị thì chọn một bề mạat, đường nào đó làm chuẩn để lấy dấu và xác định thứ tự vạch dấu.

Độ chính xác khi vạch dấu ảnh hưởng đến chất lượng gia công. Độ chính xác khi vạch dấu thường trong giới hạn $0,2 \div 0,5 \mathrm{~mm}$. Sai sót khi vạch dấu có thể dẫn đến phế phẩm khi gia công.

Để bảo đảm lấy dấu chính xác, trước khi lấy dâu cần tìm hiểu kỹ bản vẽ
chế tạo, yêu cầu kỹ thuật cần đạt và sử dụng thành thạo các dụng cụ, gá lắp dùng cho lấy dấu.

2.2. GÁ LẮP VÀ DỤNG CỤ SỬ DỤNG KHI LẤY DẤU

1. Gá láp dùng khi vạch dấu

Bàn phẳng: Bàn phẳng là nơi đặt chi tiết để lấy dấu. Bàn phẳng được làm từ gang đúc có độ hạt nhỏ, dưới có bố trí gân để tăng độ cứng vững, chống biến dạng. Mặt bên và mặt trên của bàn được gia công cơ khí, mạat phẳng làm việc được cạo đạt độ phẳng cao. Trên bề mặt làm việc trong một số trường hợp có làm các rānh vuông góc với nhau.

Khi lấy dấu chi tiết có kích thước không lớn thường dùng bàn vuông kích thước $1200 \times 1200 \mathrm{~mm}$; với chi tiết trung bình, dùng bàn chữ nhật 3000 x 4000 mm ; với chi tiết có kích thước lớn, dùng bàn có kích thước $4000 \times 6000 \mathrm{~mm}$. Bàn phẳng có thể đặt trên bàn gō (hình 2.1 a) hoặc trên bệ đỡ (hình 2.1 b).

Hinh 2.1. Bàn phẩng
a) Đặt trên bân gỗ ; b) Đạ̣t trên bệ đô.

Chất lượng đường vạch dấu phụ thuộc vào độ chính xác của bàn. Bàn phẳng thường được cān phẳng để bảo đảm mặt phẳng nằm ngang, mạat bàn sạch, không có vết. Sau khi sử dụng, mặt bàn được lau sạch bằng giẻ mềm, sau đó phủ một lớp dầu mỏng và đậy lên trên bàn một nắp gổ.

Hình 2.2. Các tấm đỏ dùng khi lấy dấu
a) Tấm phẳng; b) Khơi V; c)Tấm đõ điểu chỉnh; d) Tấm đả kiểu chêm;

1- Thân dưới; 2- Thån trên; 3-Vít chỉnh.

Các tấm đỡ: Các tấm đõ̃ là những chi tiết dùng để giữ vật cần lấy dấu trên bàn phẩng, chúng bao gồm: các tấm phẳng đạac hoạ̣c rổng, hình chữ I (hình 2.2 a), khối V (hình 2.2 b) để gá các chi tiết trụ tròn, tấm đỡ điều chỉnh bằng vít (hình 2.2 c) dùng để lấy dấu các chi tiết có hình dáng phức tạp, tấm đỡ điều chỉnh bằng chêm (hình 2.2 d), khi vặn tay quay 3 có thể điều chỉnh chính xác chiều cao nhờ hai chêm 1 và 2 .

Ngoài ra khi gá đặt các chi tiết lớn, nặng để lấy dấu có thể dùng kích. Hình 2.3 a là loại kích có mặt nghiêng dùng vít me răng vuông để nâng, hạ. Phía đầu trên của kích có thể đặt các tấm đỡ khác nhau tuỳ thuộc vào mục
đích sử dụng. Hình 2.3 b là kích kiểu con lăn, trên đầu vít me 4 lắp tấm 1 có các giá đở con lān 3 , các con lăn được tôi cứng. Loại kích này ngoài dùng để nâng, hạ còn dùng để quay các chi tiết nặng khi lấy dấu.

Hinh 2.3. Các loại kich
a) Kich có tấm đở nghiêng; b) Kích có con lăn

1- Tấm đế; 2-Con lăn; 3-Giá đỏ con lăn; 4-Vit me; 5-Thán;
c) Kích dùng khi lấy dấu trục lớn.

2. Dụng cụ vạch dấu

Mũi vạch: Mũi vạch dùng để vạch các đường dấu trên bề mặt chi tiết. Mũi vạch thường có tiết diện tròn, đường kính từ 3 đến 5 mm , đầu nhọ̣n, chiều dài từ 150 đến 300 mm .

Hinh 2.4. Müi vạch
a) Mũi vạch thẳng; b) Mũi vạcci vuông góc; c) Vạch dấu bằng mũi vạch.

Mũi vạch có dạng thẳng (hình 2.4 a) hoặc vuông góc (hình 2.4 b) được ché tạo từ thép cacbon dụng cụ (Y10 hoạc Y12), phần đầu được tôi cứng, mài nhọn. Loại (b) dùng lấy dấu trong trự̂ng hợp bề mặt có vị trí khó lấy dấu (hình 2.4 c).

Đục nhọn: (hình 2.5 a) dùng để đánh đấu vị trí (núng tâm) trên các đường vạch dấu đā vạch. Mưi đục nhọn thường chế tạo từ thép cacbon dụng cụ Y7A hoặc Y 8 A , chiều dài $90 \div 150 \mathrm{~mm}$, đường kính $8 \div 10 \mathrm{~mm}$, một đầu mài nhọn, góc côn $45-60^{\circ}$ và được tơi cứng, còn đầu kia vê thành mặt cầu cũng được tôi cứng trên chiều dài $15-20 \mathrm{~mm}$ để định tâm khi dùng búa gõ. Phần thân được khía nhám để dùng tay giữ được chẳc.

Hình 2.5. Đự nhọn
a) Mūi đục nhọn ; b) Vạch dấu bằng đục nhọn; c) Núng dấu bằng đục nhọn.

Khi thao tác, lúc đầu nghiêng đục, để đầu nhọn trùng

Com pa: (hình 2.6 a) Com pa là dưng cu dùng dể lấy dấu các cung tròn, vòng tròn có các đường kính khác nhau.

Hình 2.6. Dụng cụ vạch dấu cung tròn
a) Com pa;
b) Thước cạ̣p vạch dấu:

1- Mũi vạch; 2-Mỏ tỉnh; 3-Thån; 4-Mỏ động.

Com pa (hình 2.7) có mũi vạch dấu 5 có thể thay đổi, tháo ra thay thế hoặc mài sắc lại khi mòn.

Com pa có nhiều cỡ kích thước khác nhau, có thể vạch dấu đường tròn đường kính tới 1 mét. .

Thutớc cặp vạch dấu: Thước cạ̣p dùng để lấy dấu các đường tròn có đường kính lớn (hình 2.6 b) hoặc dùng đo kích thước chiều dài lớn, chính xác. Thước cạ̣p bao gồm phần thân 3 có vạch chia theo từng milimet hoạc nhỏ hơn, mỏ tīnh 2 và mỏ động 4. Trên các mỏ tĩnh, động có các mũi vạch 1 có thể thay thế khi mòn hoạ̃c khi lấy dấu các chi tiết khác nhau.

Hinh 2.7. Com pa có mūi vạch thay đỏ̉i
1,2- Đai ốc: 3-Cung điểu chịnh mūi vạch dấu;
4. Vitif 5- Mưi vạch có thể tháe rừi.

Thước cặp vạch dấu (hình 2.8) là loại đặc biệt hơn, có vạch chia trên hai thân thước, cho phép vạch dấu các đưương tròn nằm không cùng mặt phẳng với dường tâm.

Hinh 2.8. Thước cặp vạch dấu đặc biệt

Khi dùng thước cạ̣p vạch dấu đường tròn, sau khi điều chỉnh kích thước và cơ định bằng vít, cẩn chú ý kiểm tra lại kích thước để bảo đả̉m đường láy dấu có khoảng cách chính xác.

Thitớc góc (ke, thtớc thợ) : Thước thọ là loại dụng cụ dùng để kiểm tra gớc vuông, để vạch dấu hai đoạn thẳng vuông gớc vơi nhau, để kiểm tra vị trí thẳng đứng của chi tiết lấy dáu.

Hình 2.9 giới thiệu loại thước góc dịnh tâm dùng để vạch đường tâm trên mặt đàu chi tiết hình trụ. Dụng cụ bao gồm một ke vuông và một thước thẳng chia đôi gớc vuông. Để ke vuông tiếp xúc hai phía với mặt trụ, vạch một đuờng dáu qua thuớc thẳng, đường dấu này chính là đường kính qua tâm chi tiết. Quay thước đi một gớc, vạch đường dấu thứ hai, giao điểm hai đường dấu này chính là tâm của đường tròn.

Hinh 2.9. Dụng cụ lǎy dấu
a) Ke vuông lắy daáu tâm; b) Mŭi đực tâm:

1. Chi tiết; 2-Chụp côn; 3- Lỏ trụ; 4- Đục nhọn.

Để định tâm đường tròn của chi tiết hình trụ còn dùng muni đục tâm (hình 2.9 b) dùng để đục tâm các chi tiết hình trụ có đường kính đến 40 mm . Dụng cụ bao gồm một đục nhọn 4 có thể trượt nhẹ trong lổ trụ 3 của ống chụp côn 2 dùng để định tâm chi tiết 1 . Để mūi đực khỏi rơi ra sau khi đục tâm, dùng vít hãm lắp lên thân của ống chụp.

Hình 2.10. Thước đo góc vạn năng

Hình 2.10 là một thước đo góc vạn nāng, có thể vạch các góc độ khác nhau. Nhờ vào các vạch chia có thể dựng các góc có độ chính xác cao.

Các dụng cụ đo góc khi sử dụng phải cẩn thận, tránh để rời, va đập ảnh hưởng đến độ chính xác. Sau khi dùng xong cần lau sach bụi bẩn, tránh để nơi ẩm ướt, bảo quản trong hộp, giá đỡ.

Độ chính xác của dụng cụ đo góc được kiểm tra ở các vị trí, góc độ khác nhau bằng dưỡng kiểm, thước góc kiểm hoặc đổ gá kiểm góc chuyên dùng.

Hình 2.11 giới thiệu một thước cặp đo góc dùng dể

Hinh 2.11. Thước cạ̣p đo góc:
1,6 - Vit hām; 2,5: Thanh trượt; 3,4-Lỡ xác định vị trí

Hình 2.12. Lấy dấu hai điểm không nằm trên cùng mặt phả̉ng

Khi đó trên thước chia nà̀m ngang (hình 2.11) ta dịch thanh trượt 5 dể xác định kích thước L ; còn trên thước chia dứng, dịch thanh trượt 2 cho kích thước 1 . Sau đó gá mũi vạch vào vị trí trên chi tiết để xác định tâm hai lỗ 3 và 4 ở khoảng cách the yêu cầu. Vít 1,6 để cố định vị trí của các thanh trượt sau khi điều chỉnh khoảng cách cần thiết.

Thước díng vạch dấu: (hình 2.13) là loại dụng cụ rất thông dụng để vạch dấu chính xác. Dụng cụ bao gồm thước đứng 6 cố định trên đế 7 . Trên thước đứng có thanh trượt 5 , tren đó có vạch chia chính xác, vít 3 để có dịnh thanh trượt trên thước đứng. Trên thanh trượt có lắp mũi vạch dáu 10 , kẹp chặt nhờ vít 9 . Mạ̣t đáy của mũi vạch a phải phằng và song song với mặt phả̉ng dáy b của dé. Thanh trượt phụ 2 có vít 8 dé vi chỉnh và kẹp chạt nhờ vít 1 .

Thước đứng vạch dấu dùng để vạch daiu các đường dáu có khoảng cách chiều cao chính xác so với nhau. Khi thao tác, ta nới lỏng vít 1 và 3 , đạt mũi vạch ở khoảng gần với chiều cao đã cho, sau đó vặn vít cớ định thanh trượt 2 , rôi dùng vít vi chỉnh 8 đẻ̉ đưa du xích 4 của thanh trượt 5 cùng với mũi vạch chính xác vào kích thước cần điều chỉnh rồi kẹp vít 3 lại và vạch dấu.

Thước đứng vạch dấu có du xích vi chỉnh thường có nhiều loại với các độ chính xác 0,$1 ; 0,05 ; 0,02 \mathrm{~mm}$. Loại thước độ chính xác $0,02 \mathrm{~mm}$, vạch chia

Hinh 2.13. Thước đúng vạch dấu 1,3,9: Vit hảm; 2,5 - Thanh trượt trên thước đứng 4-Du xich; 6-Thước đứng; 7- Dé; 8-Vit chỉnh; 10 - Müi vạch. trên thước chính là $0,5 \mathrm{~mm}$ (hình 2.14 a), còn vạch chia trên du xích có chiều dài 12 mm chia ra 25 khoảng bằng nhau, như vậy mổi khoảng chia là $12 / 25$ bằng $0,48 \mathrm{~mm}$. Như vậy mổi vạch chia trên thước chính là 0,5 mm , mối vạch chia trên du xích vi chinh nhỏ hơn vạch chia trên thước chính là $0,5-0,48=0,02 \mathrm{~mm}$.

Hình $2.14 \mathrm{~b}, \mathrm{c}$, d cho một số trường hợp đo được. Cách đọc trị số đo như sau: ở hình 2.14 b , vạch 0 của du xích nà̀m ở giữa vạch 0 và 0,5 của vạch chia trên thước chính, như vậy kích thước sẽ ở trong khoảng 0 và $0,5 \mathrm{~mm}$. Ta thấy vạch chia thứ ba sau vạch số 30 cùa du xích trùng với vạch chia trên thước chính, như
vậy ta có 18 vạch chia mà mỡi vạch chia là $0,02 \mathrm{~mm}$, vậy kích thước đo được là $0,36 \mathrm{~mm}$.

Tương tự như vậy hình 2.14 c , kích thước là $0,5+(17 \times 0,02)=0,84 \mathrm{~mm}$; hình 2.14 d kích thước là $12+(14 \times 0,02)=12,28 \mathrm{~mm}$.
a)

b)

c)

d)

Hinh 2.14. Các trl só đo trên thươc đúng

3. Dụng cụ đo kiểm khi vạch dấu

Hînh 2.15. Thước lá đo chiều dài
a)Thước lá có vạch chia milimet; b) Dùng thước lá đo kiểm chi tiết.

Thước lá: Dụng cụ đơn giản nhất để đo kích thước thẳng là thước lá có vạch chia 0,$5 ; 1 \mathrm{~mm}$, chiều dài thước từ 150 đến 1000 mm , chiều rộng 11-25 mm , chiều dày thước $0,3-2 \mathrm{~mm}$. Thước lá dược ché tạo từ thép Y7 hoạ̀c Y8 (hình 2.15).

Để đo và vạch dấu có thể dùng thước dày hơn, chiều dày $6-8 \mathrm{~mm}$, chiều rộng $30-60 \mathrm{~mm}$, chiều dài có thể tứi 3 m . Khi đo chiều dài lớn thường dùng các loại thước cuộn.

Độ chính xác khi đo bằng thước lá có sai lệch là $\pm 0,5 \mathrm{~mm}$.
Com pa đong: (hình 2.16) dùng để đo kiểm kích thước ngoài (hình 2.16a), kích thước trong (hình 2.16 b), và để kiểm tra độ song song. Com pa đong được ché́ tạo từ thép Y7 hoặc Y8. Hai cạnh com pa có chiếu dài $150-$ 250 mm lắp bằng chớt để có thể quay, phía đảu có hình dáng khác nhau tuỳ theo dùng com pa đê đo trong hay đo ngoài.

Độ chính xác khi đo bằng com pa đong là $\pm 0,5 \mathrm{~mm}$.

Hinh 2.16. Com pa đong
a) Com pa đo ngoài; b) Com pa đo trong.

Khi đo bằng com pa đong, tay phải cầm vào chốt quay, mở cạnh com pa sao cho tiếp xúc vừa sát với chi tiết cần đo, sau đó đặt com pa lên thước lá hoặc thước cặp để xác định kích thước cần đo.

Dụng cụ do chinh xác: các loại thước cặp, pan-me, đồng hồ so... dùng để đo chính xác kích thước đường kính, chiều dài, chiều sâu...

Thước cặp có nhiều loại, tuỳ theo giới hạn đo và độ chính xác đo có thể có chiều dài $100,125,150,200,300,400,500,600,800$ và 1000 mm ; độ chính xác đo 0,$1 ; 0,05 ; 0,02 ; 0,01 \mathrm{~mm}$.

Hình 2.17 a là loại thước cặp có độ chính xác $0,1 \mathrm{~mm}$, gồm thân 4 có các vạch chia theo từng milimet, phía đầu có mỏ tĩnh 1 , mỏ động 3 được lắp trượt trên thân thước cặp và cố định vị trí bằng vít 2 . Để đo chính xác đến $0,1 \mathrm{~mm}$, trên mỏ động có vạch du xích chia theo $0,1 \mathrm{~mm}$.

Trước khi đo chi tiết cần kiểm tra độ chính xác của thước cặp bằng cách đưa hai mỏ sát vào nhau và kiếm tra vị trí 0 qua sự trùng khớp của các vạch chia trên thước.

Khi đo bằng thước cặp, kéo mỏ đợng ra cho đến khi hai mó tĩnh và động tiếp xúc đếu với bề mặt cân đo trên chiếu dài mỏ với độ găng vừa phải (hình 2.17 b) sau đó cớ định vít 2 lại. Giá trị cần đo được thể hiện trên vạch milimet và trên vạch du xích nào trùng với vạch chia trên thước cạ̣p.

Hinh 2.17. Thước cặp
a) Hinh dang chung

1-Mỏ tĩnh; 2-Vit; 3-Mỏ động; 4-Thān thưức cặp; 5-Vạch chia trên du xich
b) Thao tác khi đo bầng thước cạ̣p

Hình 2.18 a là loại thước cặp vừa dùng đo kiến vừa dùng để vạch dấu, loại này có mỏ động thường dài hơn để cố dịnh trên bể mặt, còn mỏ tĩnh vát nhọn dùng để lấy dấu, độ chính xác của loại thước cặp này là $\pm 0,1 \mathrm{~mm}$.

Thước cạ̣p (hình 2.18 b) ngoài chức năng do kiểm còn dùng để lấy dấu các đường tròn nhờ hai mỏ nhọn b.

Hinh 2.18. Các loại thượ cạ̣p đé đo và lấy dấu
Căn mẫu: dùng để đo hoặc lấy dấu rất chính xác (thường dùng trong chế tạo dụng cụ). Cān mẫu được chế tạo thành bộ gồm nhiều tấm căn có chiều dày khác nhau, có kích thước từ 1 đến 500 mm , độ chính xác đến $0,001 \mathrm{~mm}$.

Cān mẫu cung được chế tạo riêng thành một bộ chuyên dùng (hình 2.19) để lấy dấu chính xác. Ngoài ra khi cần lấy dấu rất chính xác có thể dùng các thấu kính quang học để phóng dại bề mặt cần lấy dấu (ví dụ: các dưỡng mẩu định hình).

Hinh 2.19. Bộ dụng cụ dùng căn māu để lấy dấu chính xác

Hinh 2.20. Giá đở có đồng hồ so

1. Chân đé; 2- Đồng hồ so; 3-Trụ đứng; 4-Co cấu khóa hām;

5- Chi tiết cần kiểm tra; 6- Đai ốc häm.
Đồng hồ so: (hình 2.20) dùng để kiểm tra chính xác vị trí của chi tiết trên bàn phả̉ng. Khi kiểm tra, để đầu đồng hồ tiếp xúc và cớ độ gāng với bề mặt chi tiết. sau đó di chuyển giá đỡ đồng hồ để kiểm tra trên bề mặt chi tiết. Độ chính xác khi dùng đồng hồ so thông dụng dể kiểm là $\pm 0,01 \mathrm{~mm}$.

Thitớc sin: là dụng cụ để đo góc chính xác, khi đùng cùng căn mẫu có thể gá thước sin dưới một góc xác định, chính xác.

Hinh 2.21. Thư\&c sin
Để gá đặt gớc chính xác theo yêu cầu (hình 2.21 b), khi đó sử dụng bộ căn māu 4 có tổng chiều cao h được xác định theo công thức:
$h=100 x \sin \alpha$
trong đó: h - Chiều cao của các miếng căn mẩu (mm);
100- Khoảng cách giữa tâm hai con lăn (mm);
α - Góc giữa mặt bàn phả̉ng và mặt trên của thước sin (độ).
Thước sin có khoảng cách tâm hai con lăn là 100 mm có thể đo góc đạt độ chính xác 10-20', thước sin có khoảng cách tâm hai con lăn là 200 mm có thể đạt độ chính xác 5-10'. Thường dùng thước sin khi đo các góc nhỏ đạt độ

Hinh 2.22. Thưóc góc để kiểm tra
a) Kiểm tra góc vuông; b) Kiểm tra mặt phẳng; c) Kiểm tra các góc khảc.

Thước góc là một loại dưỡng dùng để kiểm tra góc vuông (hình 2.22a), kiểm tra độ thả̉ng (hình 22.2 b), kiểm tra các góc khác (hình 2.22 c): 30,45 , $90,120,135^{\circ}$. Thước góc được chế tạo từ thép cacbon dụng cụ Y8 hoạc thép hợp kim dụng cụ.

Thước góc được chế tạo với nhiều cỡ kích thước khác nhau, từ cỡ $40 \times 63 \mathrm{~mm}$ đến cỡ $1250 \times 2000 \mathrm{~mm}$.

Thước kiểm đọ thẳng dùng để kiểm tra sai lệch độ thẳng (hình 2.23)

Hinh 2.23. Thước kiếm độ thẳng
a) Thước kiểm hai mặt; b) Thức kiếm ba mặt;
c) Thước kiếm bón mặt; d) Thao tác khi kiểm.

Thước kiểm độ thẳng được chế tạo từ thép cacbon dụng cụ và gồm nhiều loại khác nhau: thước kiểm hai mặt (hình 2.23a) có chiều dài từ 75 dến 125 mm , có một đầu vát nhọn, góc vát 30 và 60°. Ngoài ra còn các loại thước kiểm ba mặt (hình 2.23b), bốn mặt (hình 2.23 c) có chiều dài 175,225 và 300 mm .

Kiểm tra độ thẳng bằng dưỡng kiểm được đánh giá qua khe sáng giữa dưỡng và bề mạat cần kiểm. Khi đó, giữ dưỡng kiểm thẳng đứng, tiếp xúc với bể mặt cần kiểm, để ở vị trí ngang tầm mắt (hình 2.23 d) và quan sát qua khe sáng để đánh giá mức sai lệch về độ thẳng.

2.3. KỸ THUẬT LẤY DẤU

1. Chuẩn bị trước khi lấy dấu

Trước khi lấy dấu cần tìm hiểu kỹ bản vẽ chi tiết cần lấy dấu và quá trình công nghệ gia công chi tiết. Khi lấy dấu trên phôi (đúc, rèn) trước khi gia

Hinh 2.24. Gá đặt chi tiết trên khới V
1- Chi tiết cần lấy dấu; 2-Vit kẹp;
3- Đòn kẹp; 4-Khối V
công, để bảo đảm đủ lượng dư gia công cho các bề mạat cần chú ý chọn bề mặt trên phôi làm chuẩn để lấy dấu. Bề mặt đó cần có vị trí tương quan với các bề mặt khác và được chọn căn cứ vào các nguyên tắc chọn chuẩn thô.

Phôi thô trước khi lấy dấu phải được làm sạch vếı bẩn, cát, gỉ, gờ,vảy kim loại, đậu rót, đậu ngót, loại bỏ các phôi nứt, rỗ sâu, biến dạng, cong vênh lớn.

Phôi hoặc chi tiết trước khi lấy dấu được gá đặt trực tiếp trên bàn phẳng hoạc qua các miếng deềm. Khi gá dật chi tiết hình trụ có thể dùng các khối V (hình 2.24). Trên khối V có các rãnh a để dưa đòn kẹp 3 cài vào và kẹp nhờ vít 2 .

Các chi tiết tròn xoay khi cần lấy dấu tâm, các nắp ổ, bích nối cần lấy dấu vị trí các lổ cách nhau một góc cho trước và nằm trên cùng một đường kính qua tâm chi tiết, khi đó chi tiết có thể gá đặt trên hai mũi tâm trên bàn máy (hình 2.25 a) hoạc trên mâm cạ̉p ba chấu của ụ chia độ vạn năng (hình 2.25 b).

a)

b)

Hinh 2.25. Gá đạ̣t chi tiết tròn xoay
a) Gá trên hai mūi tâm: 1-Bàn gá; 2-Mūi tâm cố định; 3-Mūi tâm di động;
b) Gá trèn ụ chia độ: 4- Tay quay; 5- Đĩa chia; 6- Mâm cạ̣p ba chấu

2. Kỹ thuật vạch dấu

Đường vạch dấu sau khi vạch bằng müi vạch phải là đường dấu chính xác, sắc nét, mảnh, nhìn thấy rõ. Độ chính xác và chiều rộng đường vạch dấu phụ thuộc trước hết vào bề mặt cần vạch dấu. Trên bề mặt phôi thô đường
vạch dấu thường rộng hơn so với bề mặt đã qua gia công. Nhưng trên bề mạat đã gia công, chất lượng đường vạch dấu cũng khác nhau, bề mặt sau khi tiện bằng dao tiện mũi dao nhọn, bề mặt sau khi bào, xọc, thường để lại vết dao trên bề mặt, do đó khó vạch đấu chính xác; bề mặt sau khi phay thường dễ lấy dấu hơn. Thông thường trước khi vạch dấu, trên bề mặt cần vạch dấu được bôi một lớp phấn, sáp mỏng để dể quan sát đường dấu.

Khi vạch dấu, mũi vạch phải ấn đều trên bề mặt chi tiết; không dược vạch nhiều lần cùng một đường dấu vì làm bề rộng đường dấu sẽ rộng ra, giảm dộ chính xác của đường vạch dấu.

Hình 2.26. Góc nghiêng của mửi vạch

Tư thế của mũi vạch dấu cūng rất quan trọng, khi cầm mũi vạch dấu cần bảo đảm hai góc nghiêng: góc nghiêng thứ nhất của mũi vạch so với thước vạch (hình 2.26 a), góc nghiêng thứ hai của mũi vạch so với
 hướng sẽ vạch dấu (hình 2.26 b). Để đường vạch dấu song song với thước vạch, trong thời gian vạch dấu, các góc nghiêng này không dược thay đổi.

Vị trí của đầu nhọn mũi vạch cũng cần chú ý (hình 2.27) chỉ rõ (a) là vị trí đúng, (b) là vị trí mũi vạch chưa đúng.

Hình 2.27. Vị trí của đầu nhọn mūi vạch khi vạch dấu
Khi lấy dấu khối, có thể dùng thước đứng hoạ̃c mũi vạch có bàn gá để lấy dấu ở các khoảng cách chiều cao khác nhau. Để đường vạch dấu được chính xác, mūi vạch phải đặt vuông góc với mặt phẳng thả̉ng đựng của thước
đứng. Tuỳ theo vị trí, hình dạng của bề mặt cần vạch dấu mà mũi vạch phải luôn luôn theo hướng vuông góc với bề mặt cẩn vạch dâu (hình 2.28).

a)

b)

Hình 2.28. Gá đặt müi vạch khị lảy dấu bể mọ̣t nghiệng
a) Vị trí đưng của mūi vạch; b) Vị trí sai của mūi vạch.

Hình 2.29 chỉ rõ hướng đúng, sai của mũi vạch khi lấy dấu chi tiết hình trụ có vị trí thấp hoặc cao hơn đường tấm trục.

Hình 2.29. Gá đọ̣t mūi vạch khi lấy dắu ở vị trí thấp hoạ̣c cao hon tâm trục
Tư thế của thước đứng khi vạch dấu phải nghiêng một góc $75-80^{\circ}$ với hướng chuyển động (hình 2.30).

Hình 2.30. Vị trí của thước đứng khi vạch dấu (hình vē nhìn từ trên xuống)
a) Đúng; b) Sai.

Khi dùng đục nhọn để núng dấu cần chú ý: ban đầu dùng tay trái giữ vào phần khía nhám của thân đục, sau đó để mũi đục nghiêng đi và đặt đầu nhọn vào đúng vị trí (hình 2.31a) cần đục (giữa đường vạch dấu), giữ ở vị̣ trí đó rồi đưa mūi đục thẳng đứng lên (hình 2.31 b) và dùng tay phải cầm búa gō lên dục (lực gõ $\leqslant 100 \mathrm{gam}$).

Hình 2.31. Vị trí của đục nhọn khi núng dấu
Hinh 2.32 chỉ rō vị trí, chiều sấu của vết trên bề mặt sau khi vạch dấu và núng dấu.

Hỉnh 2.32. Chiều sáu của đường vạch dấu và của mūi đục nhọn
trèn bẻ̉ mặt chi tiết

Để đường vạch dấu khỏi bị mờ, mất đi trong quá trình gia công và để kiểm tra vị trí của đường dấu, người ta thường dùng đục nhọn để núng các dấu dọc theo vị trí của đường vạch dấu; khi đó khoảng cách giữa các điểm núng dấu thường từ $5-10 \mathrm{~mm}$, còn trên doạn thẳng dài thì điểm núng dấu đặt thưa hơn: $25-150 \mathrm{~mm}$. Khi gia công theo đường vạch dấu cần để chừa lại một nửa chiều rộng đường vạch dấu và một nửa điểm núng dấu.

Chỉ dùng đục nhọn để núng dấu trên bề mạ̉t sau khi đã vạch dấu xong, nếu không vết núng dấu sê có thể làm thay đổi vị trí và độ chính xác của đường vạch dấu.

Các chi tiết sau khi đã gia công tinh (mài) thường không dùng đục nhọn để núng dấu.

Thông thường dể kiểm tra vị trí của bề mặt gia công, ngoài đường dấu ở đúng vị trí cần gia công, người ta còn vạch thêm một đường dấu khác để kiểm tra cách đường dấu trước một khoảng $5-10 \mathrm{~mm}$, mục đích để kiểm tra vị trí chính xác của bề mặt gia công so với đường dấu (hình 2.33 a).

Hinh 2.33. Các đường dấu trên chi tiốt
I, II - Đường dǎ́u để gia cơng; I', II' - Đường dá̛u đê kiấm tra.

Khi gia công lỗ, ngoài đường dấu của lở để gia công, còn đường dấu của 1δ để kiểm tra (có bán kính lơn hơn $2-8 \mathrm{~mm}$), (hình 2.33 b).

Khi lấy dấu tâm 1 ®̃ trên các lơ có sấn của chi tiết, ta dùng mợt miếng g có chiều dày $8-10 \mathrm{~mm}$ đóng căng vào $10 ̊$, trên mặt phẳng của miếng gô có định một tấm kim loại móng đô dày đến 1 mm sao cho mặt phả̉ng của tấm

3. Các sai sôt, hư hỏng khi lấy dấu

Phần lớn các sai hỏng khi lấy dấu là:
1- Kích thước, vị trí các đường vạch dấu không tương ứng với kích thước cho trên bản vẽ̃, nguyên nhân do tay nghề thấp, do thiếu cẩn thận khi vạch dấu hoặc dơ dựng cụ lấy dấu không chính xác.

2- Đường vạch dấu trên phôi không thực hiện được do phôi chế tạo kém chính xác.

3- Đường vạch dấu không rõ nét, hoặc quá rộng, hoặc có nhiều đường sát nhau, do vạch dấu nhiều lần không đúng quy cách.

Khi vạch dấu, ngoài đùng các dụng cụ vạch dấu kể trên, còn dùng các chi tiết mẩu, dưỡng mẩu để vạch dấu theo biên dạng. Vạch dấu kiểu này được gọi là vạch dấu theo sản phẩm.

2.4. LẤY DẤU PHẢ̉NG

1. Thứ tự các bước lấy dấu

Trước hết cần chọn bề mặt làm chuẩn của chi tiết để vạch dấu. Trong trường hợp lấy dấu phẳng, chuẩn là cạnh ngoài của chi tiết hoặc các đường vạch dấu khác (thường là đường tâm). Trong trường hợp lấy dấu chính xác, bề mặt chọn làm chuẩn phải được gia công, mặt phải nhã̃n, bảo đảm độ chính xác.

Khi vạch dấu cần theo thứ tự: trước hết vạch các đường dấu nà̀m ngang, sau đố là các đường vạch dấu thẳng đứng, đường dấu nghiêng, cuối cùng là các cung tròn, đường tròn. Nếu chuẩn là đường dấu tâm thì bắt đầu từ đường vạch dấu tâm để vạch các đường dấu còn lại.

Sau khi vạch dấu xong, dùng đục nhọn núng dấu theo các đường vạch để xác định giới hạn khi gia công.

Khi lấy dấu phẳng thường xảy ra các trường hợp: chia các đoạn thẳng ra các phần bằng nhau, lấy dấu các đường song song và vuông gốc, iấy dấu gớc, chia góc, các cung tròn, đường tròn... Yêu cầu khi lấy dấu là phải chính xác và nhanh.

2. Vạch dấu và chia đoạn thẩng ra các phần bằng nhau

Khi vạch một đoạn thẳng đã cho trên đường dấu (hình 2.34), dùng đục nhọn nhỏ̉ núng tâm điểm A , tạo thành lổ nhọn nhỏ để đưa mũi nhọn cố định của thước dấu vào, lấy khoảng cách AB đã cho trên thước lấy dấu và vạch điểm B , dùng đục nhọ̣ đục nhẹ tâm của điểm B . Theo cách đó có thể lấy dấu các doạn thẳng tiếp theo BC ... Sau đó kiểm tra tổng khoảng cách các đoạn thẳng đā cho trùng với chiều dài trên thuớc đo khoảng cách từ điểm đầu đến điểm cuới, nghĩa là các đoạn thẩng đã được vạch dẩu là chính xác.

Hình 2.34. Vạch các đoạn thẳng trên đường dả́u

Hinh 2.35. Chia đoạn thẳng ra hai phần bà̀ng nhau

Chia doạn thẩng đā cho ra các phần bằng nhau: nếu chia theo du xích trên thước lá thường chỉ dùng khi lấy dấu thô.

- Chia một đoạn thẳng cho trước ra hai phần bằng nhau (hình 2.35), từ điểm A, B dùng com pa quay các cung aa, bb (có bán kính cung lớn hơn mợt nửa đoạn AB), các cung này cắt nhau tại hai diểm, từ hai điểm đó vạch dường thẳng CD , diểm giao nhau giữa AB và CD chính là điểm giữa của doan AB .

Có thể kiểm tra độ chính xác của đường thẳng CD bằng cách vạch hai cung khác $\mathrm{L}_{1}, \mathrm{~L}_{2}$ hai cung này phải cắt nhau ở hai điểm nằm trên đường CD . Nếu lấy cung có bán kính nhỏ hơn một nửa đoạn AB sẽ .không thể vạch được dường thẳng CD .

- Chia đoạn thẳng đã cho ra ba phần bằng nhau (hình 2.36): trên thước lấy dấu lấy khoảng cách bằng $1 / 3$ chiều dài đoạn AD và lấy điểm A, D (đã núng tâm) làm tâm dùng com pa quay cung $\mathrm{AB}=\mathrm{DC}=1 / 3 \mathrm{AD}$, láý B làm tâm quay tiếp cung BC , nếu hai cung có tâm từ B, D không trùng nhau thì kiểm tra lại bán kính cung trên du xích của thước và quay lại lẩn nữa cho đến khi điểm C là điểm giao nhau của hai cung BC và CD . Theo kinh nghiệm thường chỉ sau 1-2 lần điều chỉnh thước lấy dấu là được.

Hînh 2.36. Chia đoạn thẳng ra ba phẳn bå̀ng nhau

Khi chia đoạn thẳng ra làm $4,8,16 \ldots$ phần bằng nhau, có thể thực hiện theo cách chia trong hình 2.35 , nghĩa là chia đôi các khoảng cách, sau đó chia đôi tiếp thành $1 / 4,1 / 8 \ldots$

- Khị chia đoạn thẩng ra làm 5 phần bằng nhau (hình 2.37), trước hết đo chiều dài đoạn AC , từ C dùng com pa lấy khoảng cách bằng $1 / 5$ chiều dài đoạn AC để vạch được điểm B , lấy đục nhọn núng dấu tâm điểm B , sau đó
dùng corn pa chia đoạn AB ra làm 4 phần bằng nhau, cuối cùng kiểm tra độ dài các đoạn thẳng đã chia so với BC .

Hình 2.37. Chia đoạn thẳng ra nåm phần bằng nhau

- Chia đoạn thẳng đã cho ra 6 phần bằng nhau, trước hết chia đôi đoạn đó ra, sau đó chia mỗi doạn nhỏ ra ba phần bằng nhau theo cách đã trình bày ở trên.
- Khi chia đoạn thẳng ra nhiều phần bằng nhau, có thể dùng phương pháp đồ thị như sau: Giả sử cần

Hình 2.38. Dùng phương pháp đớ thị để chia một đoạn thẳng chia doạn thẳng AB (hình 2.38) ra 7 phần bằng nhau.

Từ điểm A , vạch một đoạn AC tạo thành một góc nhọn so với AB , từ điểm A , dùng com pa vạch ra theo thứ tự 7 đoạn thả̉ng bà̀ng nhau $\mathrm{Aa}_{1}, \mathrm{a}_{1} \mathrm{a}_{2}$, $\mathrm{a}_{2} \mathrm{a}_{3}, \mathrm{a}_{3} \mathrm{a}_{4} \ldots$. từ điểm a_{7} dùng thước nối với điểm B , sau đó qua các điểm a_{6}, $\mathrm{a}_{5} \ldots$ vạch các đường thẳng song song với $\mathrm{a}_{7} \mathrm{~B}$, khi đó các điểm $\mathrm{b}_{6}, \mathrm{~b}_{5}, \mathrm{~b}_{4} \ldots$ sẽ tạo thành các đoạn thẳng bằng nhau và bằng $1 / 7$ đoạn AB .

Sau đây là các ví dụ chia đoạn thẳng ra nhiều phần bằng nhau (nhiều hơ 7 phẩn):
Ví dụ 1: Chia đoạn thẳng AC chiều dài 315 mm ra làm 30 phần bằng nhau.
a)

b) A

c)

10,5
Hình 2.39. Chia đoạn thẳng ra một số chẵn phần bầng nhau

Vì 30 là một số chã̃n, vì thế trước hết dùng com pa chia đoạn AC ra làm hai phần bằng nhau qua điểm B (hình 2.39 a), dùng đục nhọn núng dấu tâm điểm B .

Một nửa chiều dài doạn đã cho là $315: 2=157,5 \mathrm{~mm}$ cần phải chia ra thành 30 : $2=15$ phần bầng nhau.

Só 15 là mơt sớ lẻ nhưng chia hét cho 3 , vì thé dùng com pa chia mठ̋i nửa đoạn thành 3 phần bằng nhau theo cách đã giới thiệu ở phần trước rơi dùng đục nhọn núng tâm các điểm này (hình 2.39 b). Mỡi đoạn đã chia có chiều dài là 157,5: $3=52,5 \mathrm{~mm}$ và cấn phải chia ra làm 5 phần nhỏ hơn bằng nhau.

Việc chia đoạn $52,5 \mathrm{~mm}$ ra thành 5 phàn bằng nhau, có nghịa là $52 ; 5: 5=10,5 \mathrm{~mm}$ có thể thực hiện theo cách: từ điểm núng dấu của đoạn thẳng đấu tiên, lấy dấu lùi về một khoảng cách $10,5 \mathrm{~mm}$, sau đó chia đoạn còn lại thành 4 phấn đếu nhau. Theo cách này có thé chia nớt các đoạn khác còn laị.

Ví dụ 2: Chia đoạn thẩng AB chiếu dài 315 mm thành 31 phàn bà̀ng nhau.
Trước hết ta thấy 31 là một số lẻ và còn là mợt só nguyên tớ, viẹc chia đoạn AB bằng com pa từ điểm đảu A và điểm cuới B là rất kho bảo đảm đọ chính xác nếu theo cách chia theo từng đoạn chiều dài bầng $1 / 31$ đoạn đã cho, vl̀ mói vạch chia theo tính toán là $315: 31=10,16 \mathrm{~mm}$ (làm tròn theo du xích trên thước lấy dáu là $10,2 \mathrm{~mm}$).

Từ só 31 ta thấy nếu thêm 1 sẽ là só 32 là sớ chẫn, và $32=2^{5}$, khi chia co thể dùng com pa chia đôi làm nhiều lần. Vl vạy từ điêm B , ta lây đoạn BC $=10,2 \mathrm{~mm}$ (hình 2.40), và bài toán trở thành chia đoạn thẳng AC có chiếu dài $315+10,2=325,2 \mathrm{~mm}$ ra thành 32 phần bằng nhau, khi đó ta có thể chia đôi chính xác bằng com pa qua 5 lần chia.

Hình 2.40. Chia một đoạn thẳng thành mợt sớ lể phấn bả̉ng nhau
3. Vạch các đường dáu là các đoạn thả̉ng vuông góc, song song, nghiêng Khi vạch các đường dấu vuông góc thường dùng thước góc (thước thợ, ke). Phôi được gá đặt ở vị trí cố định trên bàn phẳng lấy dáu (hình 2.41) và dùng thước góc 1 có chân dịch chuyển theo mặt cạnh góc vuông b của bàn phẳng để vạch đường dấu I -I , sau đó chuyển thước góc sang mặt cạnh a để vạch đường II - II vuông góc với đường $\mathrm{I}-\mathrm{I}$.

Hinh 2.41. Vạch đá̛u các đ̛̉ường vuông gớc bằng thước gớc trên bàn phẳng lấy dấu

Trong trường hợp phôi cần lấy dáu có các mặt cạnh đã gia công và bảo đảm độ vuông góc (được kiểm tra bằng thước thợ), khi ấy thước góc có thể dịch theo hai mặt cạnh của chi tiết (hình 2.42) để vạch ra hai đường vuông góc I - I và II - II.

Cũng có thẻ̉ gá đặt một thước góc 3 trên chi tiết cần vạch dấu (hình 2.43), kẹp bằng các miếng kẹp 2 rồi dùng thước góc 4 trượt trên thước góc để vạch các đường dấu vuông góc ở vị trí yêu cầu.

Hình 2.42. Vạch dấu đường vuông góc trên chi tiết có các mặt bên đā gia công tạo thành góc vuờng

Hinh 2.43. Vạch dấu các đường vuông góc bằng cách kẹp thước góc trên phôi 1- Phôi; 2-Miếng kep; 3,4-Thước góc.

Các trường hợp vạch dấu kể trên chỉ thích hợp khi bề mặt phôi cần vạch
dấu là mạat phẳng, kích thước không lớn. Trong thực tế trên bề mật phôi có các mạt phẳng lồi lőm khác nhau, hoặc phôi có kích thước lớn, khi ấy yạch các dường thẳng vuông góc với nhau thường dùng các dụng cụ vạch dấu khác như com pa, thước lây dấu...

Hînh 2.44 giới thiệu cách dựng đường vuông góc với đường thẳng AB cho trước.

Khi đó từ hai điểm A, B của đường

Hình 2.44. Dựng đưởng vuông gúc với một ơường thẳng cho trưóc thẳng đã cho dùng com pa có bán kính lớn hơn $\mathrm{AB} / 2$ quay các cung cất nhau ợ C , từ đó có thể dựng đường CD vuòng góc với AB qua điểm giữa của AB .

Hinh 2.45: Dựng đừ̀ng vuông góc không bảo đảm độ chính xác khi bán kính cung quay nhỏ hoạc lớn quá

Khi chọn bán kính quay của com pa nèn chọn bằng khoảng $2 / 3$ chiều dài đoạn AB , nếu chọn nhỏ hoặc lớn quá (khi góc α nhọn), (hình 2.45) khó có thể bảo đảm độ chính xác của đường thẳng vuông góc với đường thẳng đā cho.

Vạch các đường dấu song song với đường thẳng đã cho cüng theo phương pháp tương tự như khi vạch các đường vuông góc.

Vạch các đường dấu nghiêng có thể thực hiện theo các cách: theo tọa đọ kích thước (hình 2.46a), theo độ dốc (hình 2.46b) hoặc theo gớc nghiêng (hình 2.46c).

Hinh 2.46. Xăc định vị trí các đường dấu nghiêng a) Cho theo kích thước; b) Cho theo độ dóc; c) Cho theo góc,

- Trường hợp đầu tiên (hình 2.46a), để xác định đường dấu nghiêng theo kích thước, dùng thước vạch một đoạn thẳng có chiều dài cho trước ($\mathrm{L}=120$ mm), từ điểm toạ độ cuới cùng dựng mợt đường vuông góc với đoạn thả̉ng đó, trên đường vuông gớ lấy tọa đọ kích thước chiểu cao (30 mm), nơi hai điểm ta có môt đường vạch dấu nghiéng.
- Trường hơp thứ hai (hình 2.46 b) cho đô dớc $1: 4$, cón nghĩa là tren m J_{i} đoạn chiéu dài 4 mm , có đô nang 1 mm . Như vạy trên đường thằng đả cho $\mathrm{AB}=120 \mathrm{~mm}$ (hình 2.47), từ điém A láy đoạn $\mathrm{AC}=40 \mathrm{~mm}$, rồi từ điếm C vạch đường vuông góc vơi AB , lấy trên đó đoạn $\mathrm{CD}=10 \mathrm{~mm}$. Nơi AD kéo dài sẽ co đường dấu nghiêng có đô dớc 1:4.

Hinh 2.47. Dûng dừ̛̀ng da̛u nghiêng 1:4

- Trường hơp thứ ba (hình 2.46 c) cho góc nghiêng, đây là trường hợp thường hay gặp trên bản vẽ ky thuật, khi đó có thể vạch đường dấu nghieng theo các cách sau:

Dùng thước đo góc vạn năng để xác định góc trực tiếp.
Dựng góc theo cách dùng các hàm só lượng giác để xác định góc trong một tam giác vuông.

Xác định góc theo cách dụng cung tương ứng của góc đó khi bán kính $\mathrm{R}=1$.

+ Xác định góc bằng thước đo góc vạn năng không thích hợp khi vạch dấu trên chi tiết có kích thước nhỏ hoặc lớn quá (do giới hạn kích thước của dụng cụ đo góc).
+ Xác định góc theo hàm số lượng giác trong một tam giác vuông bā̀ng cách dùng máy tính hoạac bảng tra. Hình 2.48 là cách xác định góc theo hàm số tang:

$$
\operatorname{tg} 14^{\circ}=\frac{B C}{A B}
$$

Hinh 2.48. Dụng đường dấu nghiêng theo hàm \$6 tang
mà $\operatorname{tg} 14^{\circ}=0,24933 ; \mathrm{AB}=100$, do đó $\mathrm{BC}=24,93 \cong 25$
Như vậy dựng đường thẳng nghiêng góc 14° bằng cách dựng một tam giác vuông có hai cạnh góc vuông $\mathrm{AB}=100 \mathrm{~mm}$ và $\mathrm{BC}=25 \mathrm{~mm}$.

+ Xác định góc theo cung chắn góc nghĩa là xác định dây cung chắn góc tương ứng trên vòng tròn có bán kính bằng 1 , khi đó dây cung chấn góc 14° se là:

$$
s=2 \cdot \sin \left(14^{\circ} / 2\right)=0,2437
$$

Theo hình vẽ 2.49 , trên chiếu dài đoạn $\mathrm{AB}=120 \mathrm{~mm}$, lây diêm B

Hinh 2.49. Di̛ng góc theo day cung chán góc làm tâm, dùng com pa quay một cung có bán kính $B C=S$:

$$
\mathrm{S}=\mathrm{s} . \mathrm{R}=0,2437.120=29,244 \cong 29,3 \mathrm{~mm}
$$

Cung này cất cung tròn bán kính AB ở điểm C , nơi A vớ C ta $\mathrm{có}$ đường dấu nghiêng góc 14°.

Ngoài ra khi đo góc còn có thể dùng thước đo góc theo tỷ lẹ.

4. Xác định tâm đường tròn, cung tròn, tâm bế mặ tròn xoay

Khi lấy dấu các mật bích, đỉa và các chi tiết tròn xoay, cơng việc đâu tiên thương làm là xác định tâm của bể mặt tròn xoay đó. Nhờ có tâm có thể vạch các dường dấu khác có vị trí tương quan so với bề mạt tròn xoay đó.

Hinh 2.50 giới thiệu cách xác định tâm 1δ tren một chi tiết dạng tấm vuông có lỡ bên trong. Đế tìm tám của lỗ chi tiết, trước hết dùng mọt tấm gō phả̉ng đóng căng vào 100 sao cho mặt trên của tấm gở trùng với mặt đấu lỡ. Sau khi vạch hai đường thẳng qua tâm có thể xác định được tâm lố trên tấm gỗ. Để xác định hai đường vuông góc và đi qua tâm lô, đưa thước định tâm $10 \overline{\text { (}}$ (1) vào, để cho hai vấu áp vào thành lổ, mặt bên của thước áp vào cạnh của thước thợ (2) có ngàm tiếp xúc với mặt bên a của chi tiết, qua đó vạch dấu đường thả̉ng qua tâm lỗ và vuông góc với mặt bên a của chi tiết.

Hình 2.50. Xác định tâm lỗ chi tiết đã gia công 1-Thức định tâm; 2- Thưóc thọ.

Sau đó chuyển thước thợ (2) tiếp xúc với mặt bên b của chi tiết và dịch chuyển thước (1) theo cách đã làm ở trên để vạch dường dấu thứ hai qua tâm chi tiết vuông góc với đường dáu ban đầu.

Để kiểm tra tâm lổ, có thể dùng com pa, thước lấy dấu để kiểm tra (hình 2.51).

a)

b)

c)

Hình 2.51. Kiêm tra tåm chi tiết bằng các loại dựng cụ lấy dấu $a, b)$ Dùng com pa; c) Dùng thưóc lấy dấu.

Trong trường hợp cần xác định tâm của một vòng tròn, cung tròn, ta có thể dựa vào các quan hệ hình học của các dây cung trong đường tròn.

Khi có một đường tròn cho trước, ta chọn hai điểm A, B, và dùng đục nhọn núng tâm hai điểm đó (hình 2.52). Lấy hai điểm A, B làm tâm, dùng com pa quay một cung cắt đường tròn cho trước ở các điểm $\mathrm{a}_{1} \mathrm{a}_{2}, \mathrm{~b}_{1} \mathrm{~b}_{2}$. Núng tâm các điểm này và dùng com pa có bán kính bằng $2 / 3$ chiều dài cung $a_{1} a_{2}$ (và $b_{1} b_{2}$), lấy tâm là $\mathrm{a}_{1}, \mathrm{a}_{2}$ (và $\mathrm{b}_{1}, \mathrm{~b}_{2}$) quay một cung cất nhau ở điểm C (và D), nối dường AC (và BD) và kéo dài, chúng sẽ giao nhau ở tâm O của đường tròn.

Cũng có thể xác định tâm O của cung tròn cho trước theo cách khác (hình 2.52 b).

Hình 2.52. Xác định tâm của một cung tròn

Trên cung tròn ta chọn 3 điểm $\mathrm{A}, \mathrm{B}, \mathrm{C}$ và dùng đục nhọn núng tâm chúng. Láy A và B , rồi B và C làm tâm, quay các cung tròn có bán kính bằng $2 / 3$ dây cung tương ứng, chúng sẽ cắt nhau ở hai điểm. Vạch các đường thẳng qua hai điểm đó, chúng sẽ cắt nhau ở tâm O của chi tiết.

5. Láy dấu các cung tròn tiếp xúc với các đường thả̉ng và đường cong

Một sớ chi tiết máy ở các bề mặt giao cắt nhau thường được vê tròn để bảo đảm tính chất làm việc của chúng. Để lấy dáu chính xác cung tròn tiếp tuyến với các đường thả̉ng thường dựa trên các mối quan hệ về hình học.

- Trên hai đường thẳng AB, CD cho trước vuông góc với nhau (hình 2.53a) cần lấy dấu một cung có bán kính R tiếp tuyến với hai đường thẩng đớ.

Hînh 2.53. Lấy dấu cung tròn tiếp tuyển với hai đường thẳng vuông góc nhau
Từ điển giao cắt M (hình 2.53 b) ta quay một cung có bán kính R cắt hai đường thẳng đã cho ở K và L . Lấy K , L làm tâm quay một cung có bán kính R, chúng sẽ cắt nhau ở O. Từ tâm O quay một cung có bán kính R, cung đó sẽ tiếp tuyến với hai đường thẳng vuông góc đã cho.

- Hình 2.54 giới thiệu cách lấy dấu cung tròn có bán kính R tiếp tuyến vơi hai đường thẳng tạo với nhau một góc cho trước nào đó.

a)

b)

Hinh 2.54. Láy dá̛u cung trôn tiếp tuyeưn với hai đường thẳng tạo với nhau một góc cho trước

Trước hết ta vạch hai đường thẳng song song với AB và CD , cách chúng một khoảng R , hai đường thẳng này sẽ cắt nhau ở O . Từ tâm O quay một cung có bán kính R, cung đó sẽ tiếp tuyến với hai đường thẳng đã cho.

- Hlnh 2.55 giới thiệu cách lấy dấu cung có bán kính R tiếp tuyến với một đường thằng và mọt cung cho trước.

Hinh 2.55. Láy dấu cung tròn tiếp tuý̛n vớl mợt đường thả̉ng và mợt cung cho trươc

Trước hết, từ cung AB cho trước với tâm O_{1} quay mọt cung có bán kính $\left(\mathrm{R}+\mathrm{R}_{1}\right)$, từ đường thẳng CD , ta kẻ mộ đường thẳng khác song song và cách CD môt khoảng R . Đường thẳng này và cung $\left(\mathrm{R}+\mathrm{R}_{1}\right)$ cất nhau ở O . Điểm O chính là tâm của cung tròn tiếp tuyến có bán kính R.

- Hình 2.56 giới thiệu cách lấy dấu cung tròn có bán kính R tiếp tuyến với hai cung tròn cho trước.

Từ tâm điềm O_{1} của cung AB và O_{2} của cung CD ta quay cung tròn có bán kính tương ứng là $\left(\mathrm{R}+\mathrm{R}_{1}\right)$ và $\left(\mathrm{R}+\mathrm{R}_{2}\right)$, chúng cất nhau ở O . Điểm O chính là tâm của cung tròn tiếp tuyến có bán kính R.

- Hình 2.57 giới thiệu cách vạch dấu cung tròn tiếp tuyến với ba đường thẳng cho trước.

Hình 2.56. Lã̛y dấu cung tròn tiếp tuyễn vá̛i hal cung tròn cho truớc

Hỉnh 2.57. Lấy đấu cung tròn tiếp tuyến vá̛i ba đường thả̉ng
Tâm O của cung tròn đó chính là giao điểm của hai đường phân giác BO và CO của các góc $\widehat{\mathrm{ABC}}$ và $\widehat{\mathrm{BCD}}$ tạo bởi ba đường thẳng.

- Hình 2.58 giới thiệu cách lấy dấu cung tròn đi qua các điểm $\mathrm{A}, \mathrm{B}, \mathrm{C}$, D... cho trước.

Trước hết đùng đục nhọn núng dấu tâm các điểm đã cho và nối chúng lại thành các đường thẳng. Sau đó theo các phương pháp đã giới thiệu ở phẩn trên, vạch một cung tròn qua ba điểm $\mathrm{A}, \mathrm{B}, \mathrm{C}$, tâm được xác định ở O_{i}, có bán kính $\mathrm{O}_{1} \mathrm{~A}=\mathrm{O}_{1} \mathrm{~B}=\mathrm{O}_{1} \mathrm{C}$. Tiếp theo chia đôi đường thẳng CD , dường thẳng này cắt CO_{1} kéo dài ở điểm O_{2}. Vạch cung CD có tâm là O_{2}. Đoạn chuyển tiếp giữa cung ABC và CD là đều vì những cung này có tâm trên một đường thẳng qua điểm C .

Hinh 2.58. Vạch dấu cung tròn qua các điểm cho trước

Tiép theo vạch đường thẳng chia đôi đoạn DE , đường thẳng này cắt đường thẳng $\mathrm{O}_{2} \mathrm{D}$ kéo dài ở điểm $\mathrm{O}_{3}, \mathrm{O}_{3}$ là tâm của cung DE . Theo cách này có thể vạch dấu tât cả các cung còn lại.

- Hinh 2.59 giới thiệu cách vạch dáu cung tròn đồng tâm vơí cung cho trước.

Hinh 2.59. Vạch dấu cung tròn đởng tâm với cung cho trước

Vậch các cung CC hoặc DD đồng tâm với cung AA và cách cung đã cho một khoảng a . Nếu tâm cung đã cho nằm trên phỏi, việc vē cung khác trở nên đơn giản sau khi đã xác định tâm. Nếu tâm cung đã cho không nằm trên mạat phôi, khi ấy thực hiện theo cách sau:

Trên cung đã cho (hình 2.59 b), dùng đục nhọn núng tâm các điểm a_{1}, $\mathrm{a}_{2}, \mathrm{a}_{3} \ldots$. Từ các tâm này vạch các cung có bán kính bằng khoảng cách a , các cung này càng dày càng tốt. Sau đó dùng dưỡng tròn tương ứng nối cho tiếp tuyến với các cung đã vạch. Theo cách này cũng có thể vạch dường cong song song với đường cong đã cho và cách đều một khoảng cách a cho trước (hình 2.60).

- Hình 2.61 giới thiệu cách vạch dấu cung tròn qua ba điểm khi tâm của ba điểm đó không nằm trên phồi.

Hình 2.60. Lấy dấu đường cong song song với đường cong cho trươc

Lấy điểm A, B làm tâm, quay các cung tròn $\widehat{\mathrm{BB}}_{1}, \widehat{\mathrm{AA}}_{1}$ có bán kính AB . Từ điểm giữa C vạch các đường thẳng AC và BC cắt cung $\widehat{\mathrm{AA}_{1}}$ và cung BB_{1} ở các điểm a_{4} và b_{4}. Chia cung Aa_{4} và Bb_{4} ra làm các phần bằng nhau (trong hình vẽ chia thành 4 phần bằng nhau), được các điểm a_{1}, a_{2}, a_{3} và b_{1}, b_{2}, b_{3}. Lấy tiếp các phần bầng nhau trên đoạn cung tiép theo ta có các điểm $\mathrm{a}_{5}, \mathrm{a}_{6} \ldots \mathrm{~b}_{5}, \mathrm{~b}_{6} \ldots$ Từ điểm A vạch các đọan thẳng qua các diểm $\mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3} \ldots$ của cung BB_{1}, từ điểm B vạch các đoạn thả̉ng qua các điểm $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3} \ldots$ của cung AA_{1}. Điểm giao cắt của các doạn thẳng này thể hiện trến hình 2.61 chính là các điểm nằm trên cung tròn cần tìm. Dùng dưỡng nối chúng lại thành cung tròn.

Hình 2.61. Vạ̣ch dấu cung tròn qua ba điểm khi tâm ba điểm không nằm trèn phôi

- Hĩnh 2.62 giới thiệu cách vạch dấu cung tròn khi biết chiều dài dây cung và chiều cao f .

Hinh 2.62. Vậch dấu cụng tròn khi biết chiểu dải dây cung và chiều cao f
Từ dây cung AB cho trước vạch đường trung trực rồi xác định điểm C có chiều cao $\mathrm{OC}=\mathrm{f}$. Nếu tâm đường tròn nằm trên phôi, khi đó xác định tâm đường tròn qua ba điểm $\mathrm{A}, \mathrm{B}, \mathrm{C}$ theo cách như ở hình 2.52. Nếu tâm đường tròn không nằm trên phôi, khi đó xác định cung tròn theo cách như ở hình 2.61 .

6. Chia vòng tròn ra các phần bà̀ng nhau

Việc chia đường tròn ra các phần bằng nhau thường dùng khi lấy dấu khoan các lỗ cách đểu nằm trên một đường tròn của mặt bích một chi tiết.

Chia đường tròn ra $2,3,4$ phần bằng nhau và tương ứng ra 6,8 phần bằng nhau có thể dễ dàng thực hiện bằng các dụng cụ lấy dấu thông thường. Nhưng chia đường tròn ra 5 phần bằng nhau là một việc tương đối phức tạp. Cách

Hinh 2.63. Chia một đường tròn ra năm phá̛n bẳng nhau thông thường là xác định theo tính toán dây cung bằng chiều dài cạnh của hình ngũ giác đều theo bán kính của dường tròn cho trước. Tuy nhiên cách này thường khó chính xác vì số liệu tính toán thường là só thập phân.

Để dễ dàng, thuận tiện hơn khi vạch dấu chia đường tròn ra 5 phần bằng nhau có thể tiến hành theo cách sau (hình 2.63).

Trước hết từ đường tròn đã cho, vạch hai dường kính AB và CD vuông góc với nhau, từ bán kính $O D$ dùng com pa chia đôi đoạn OD được điểm M . Dùng đục nhọn núng tâm điểm M . Láy M làm tâm, vạch một cung tròn có bán kính MA cắt cạnh CD ở điểm H. Lấy A làm tâm, quay một cung tròn có bán kính AH cắt đường tròn ở điểm K , nối AK , cạnh AK chính là mọt cạnh của ngũ giác đều nội tiếp trong đường tròn đã cho. Từ A, K dùng com pa có thể xác định các điểm còn lại của hình ngũ giác đều đó.

Khi chia đường tròn ra thành 10 phần bằng nhau, công việc bắt đâu tương tự như cách chia đã chỉ trong hình 2.63. Ở đây đoạn OH chịnh là cạnh của hình thập giác đểu. Dùng cơm pa với khâu đọ là OH để chia đường tròn ra thành 10 phần bằng nhau.

Để chia đường tròn ra thành 7 hoạ̣c nhiều phần bằng nhau, trong nhiều trường hợp người ta sử dụng các bảng tra sẫn dùng cho người thợ lấy dâu.

Bảng tra này xác định dây cung s giữa hai điểm kề nhau của các điểm chia đều trên đường tròn có bấn kính bẵng một đơn vị.

$$
\begin{equation*}
\mathrm{s}=2 \cdot \sin \frac{360^{\circ}}{2 . \mathrm{Z}} \tag{1}
\end{equation*}
$$

trong đố: Z là số điểm cần chia đều trên đường tròn.
Khi đó với đường tròn cho trước có bán kính là $\mathrm{D} / 2$, ta có chiều dài doạn thả̉ng L (dây cung) cẫn chia đều trèn đường tròn sẽ là:

$$
\begin{equation*}
\mathrm{L}=\mathrm{s} . \mathrm{D} / 2 \tag{2}
\end{equation*}
$$

Sau đây là một số bài tập vạch dấu thường dùng khi lấy dáu tâm các lố chia đều trên một đường trồn:

Bài tập 1: Trên mặt bích (hình 2.64 a) cần vạch dấu 15 lỗ cách đều trên đường tròn 400 mm để sẽ khoon các lỗ $\phi 22 \mathrm{~mm}$.

Hinh 2.84. Vạch dáu 15 Iđ cách đớu trên đường tròn 400 của măt blch

Hướng dä̃n thưtc hiẹn:

Trình tự công việc tiến hành như sau:

+Trước hết để xác định tâm đường tròn $\Phi 400 \mathrm{~mm}$, ta đóng căng vào lơ một tấm gố cho phẳng với mặt đû̉u rồi xác định tâm lỡ.

+ Dùng com pa vạch một đường tròn có dường kính 400 mm .
+ Chia vòng tròn này ra 15 phần bằng nhau bằng cách: trước hết ta xác định chiều dài cạnh của đa giác đều 15 cạnh nội tiếp trong đường tròn. Tra bảng hoạ̣c tính dây cung s (công thức 1) trên đường tròn bán kính bằng một đơn vị ta có:

$$
\mathrm{s}=2 \cdot \sin \frac{360^{\circ}}{2 \cdot 15}=0,4158
$$

Từ công thức (2) ta có:

$$
\mathrm{L}=\mathrm{s} . \mathrm{D} / 2=0,4158.400 / 2=83,16 \mathrm{~mm}
$$

Dùng com pa với khẩu độ bằng 83,16 (cạnh của hình đa giác đều 15 cạnh) để chia đường tròn ra thành 15 phần bằng nhau.

Tuy nhiên ta nhận tháy việc lấy khẩu độ chính xác $83,16 \mathrm{~mm}$ là rất khó vì vạch chia của dụng cụ lấy dấu thông thường là $0,1 \mathrm{~mm}$, do đó ta chỉ có thể lấy khẩu dộ com pa bà̀ng $83,1 \mathrm{~mm}$, vì vậy có thể thấy sau 15 lần chia, sai số tích luỹ lại sẽ xấp xỉ 1 mm ảnh hưởng đến độ chính xác lấy dấu.

Để khắc phục sai số, giảm bớt hiện tượng tích luỹ của sai số, ta sẽ lấy dấu theo cách sau:

Trước hết, chia đường tròn đã cho thành 3 phần bằng nhau (qua các điểm $\mathrm{A}, \mathrm{B}, \mathrm{C}$), (hình 2.64 b). Sau đó trên mổi đoạn $\mathrm{AB}, \mathrm{BC}, \mathrm{CA}$ ta chia tiếp ra 5 phần bằng com pa với khẩu đọ̣ $83,16 \mathrm{~mm}$, như vậy sai số tích luỹ sẽ giảm ba iần.

Để giảm bớt sai số khi chia 5 phần bằng nhau, trên cung AB , trước hết dùng com pa với knẩu độ đā cho chia theo chiều từ A đến B , sau dó chia ngược lại từ B đến A . Nếu khẩu độ com pa không chính xác, các đường vạch dấu sẽ không trùng nhau. Khi ấy lượng không trùng sẽ chia bổ sung cho đều. Sau khi chiia đều, dùng đục nhọn núng dấu tâm 15 lổ trước khi đưa vào khoan.

Bài tập 2: Trên dưỡng (hình 2.65 a), yêu cầu vạch dấu chia đều tâm 40 iố có dường kính 2 mm trên đường tròn dường kính 800 mm .

Hình 2.65. Lấy dấu tâm các lō trên dươnng
Hıớng dẫn thực hiẹn:
Trình tự công việc tiến hành như sau:

+ Trước hết xác định lâm của dưỡng bằng cách vạch hai đ̛̛̣ờng thẳng vuông gốc với nhau qua tâm, dùng đục nhọn núng dấu tâm của dưỡng.
+ Dùng com pa (thước vạch dáu) có khẩu độ bằng $800 / 2=400 \mathrm{~mm}$ vạch đường tròn dường kính $\Phi 800 \mathrm{~mm}$.
+Chia đường tròn đường kính 800 mm ra thành 4 phần bằng nhau (hình 2.65 b).
+ Trên môi phần ta chia tiếp thành hai phần nhỏ bằng nhau.
+ Trên mỗi phần nhỏ này, để chia tiếp thành 5 phần bằng nhau, tạ xác dịnh kích thước L như sau:
$\mathrm{L}=\mathrm{s} . \mathrm{D} / 2$
Trong dó theo bảng hoặc tính toán $\mathrm{s}=0,1569$
Do đó:
$\mathrm{L}=0,1569.800 / 2=62,76 \mathrm{~mm}$.
Dùng com pa có khẩu độ $\mathrm{L}=62,76$ để chia tiếp thành 5 phần bằng nhau, cách chia như đã trình bày ở bài tập 1 .

7. Lấy dấu phả̉ng theo dưởng

Lấy dấu phẳng theo dưỡng có thể thực hiệ̣n dễ dàng và nhanh chông nhờ các dưỡng có sẫn.

Để lấy dấu, trèn bề mặt phôi đã gia công ta gá đật dưởng lên và dùng mũi vạch để vạch dấu biên dạng của dưỡng lên trên bề mặt chi tiết (hình 2.66).

Phương pháp lấy dấu này thường dùng khi gia công chi tiết phức tạp. Ngoài lấy dấu biện dạng

Hinh 2.66. Lấy dấu biên dạng theo dưỡng theo dưỡng, còn dùng dưỡng để lấy dáu các lô, đặc biệt là một hệ thống nhiều lō nằm trên bề mặt. Ví dụ; lỗ trên nấp xi lanh, mặt quy lát..., nếu lấy dấu lổ theo phương pháp thồng thường rất khó bảo đảm vị trí các lỗ so với nhau và so với hình dạng bên ngoài của chi tiết.

Dưỡng mẩu đơn giản thường được chế tạo từ các tấm kẽm dày khoảng $0,5 \mathrm{~mm}$, trên đó các đường dấu rất dể phân biệt. Dưỡng cần sử dụng nhiều lần, cần độ tin cậy cao thường dược làm từ thép tấm mỏng. Dưỡng có kích thước lớn rất dễ bị uốn cong hoặc gãy, để bảo đảm đủ cứng vững trên bề mặt được gắn thêm các tấm gỗ hoạ̣c các gân tāng cứng.

Các dưỡng phức tạp được chế tạo trong phân xưởng dụng cụ bằng các tá́m thép có chiểu dày 2 mm hoặc dày hơon. Trên các dưỡng này còn có các cữ tỳ và gá lắp để định vị và kẹp chặt lên chi tiết cần lấy dấu.

Nhờ các dưỡng có thể giảm đáng kể công sức và thời gian cho việc lấy dấu trước khi gia công chi tiết.

Ví dụ: Dùng dưỡng (hình 2.67 a) dể lấy dấu các lỗ trên chi tiết.

Hinh 2.67. Lấy đấu lỡ theo dưỡng
Trước hết bôi màu lên bề mặt chi tiết chổ cẫn lấy dáu và đặt dưỡng lên trên chi tiết (hình 2.67 b). Giữ chặt vị trí đó bằng một tay, còn tay kia dùng mũi vạch để vạch dấu các lở. Sau đó tháo dưỡng ra và lấy dáu tâm của các lở đã vạch.

Để lấy dấu tâm cho thuân tiện, ngoài dươ̆ng có 10 đ đúng yêu cấu còn dùng dưỡng có khoan thủng các ī̄̃ nhỏ, đường kính 2-2,5 mm (hình 2.68a). Đăt tấm dưỡng lên chi tiêt và có định lại, dưng đục nhọn đưa qua các lỡ nhỏ để núng tâm tất cả các lỗ trên chi tiết. Sau đó đặt dưỡng co lố đúng lên và dưng mũi nhọn vạch dáu các lô theo đường tròn.

Hỉnh 2.68. Lấy dắu tâm lỗ bằng đục nhọn theo dưởng
a) Dương; b) Lấy dấu theo dưỡng;

Tuy nhiên lấy dấu tâm theo cách này có nhược điểm là trong thời gian dùng đục nhọn để núng tâm các lỗ, cả hai tay đều phải thao tác: một tay giữ đục, một tay cẩm búa, vì thế dưỡng rất dể bị dịch chuyển trên chi tiết ảnh hưởng đến độ chính xác vị trí các dấu. Thông thường khi ấy phải bổ sung thêm cơ cấu kẹp chặt dưỡng với chi tiết (hình 2.68 b).

Nhiều người thọ̣ lấy dấu xác định tâm các lổ theo dưỡng nhưng không dùng đục nhọn mà dưng mũi vạch. Dưỡng đật trên chi tiết để lấy dấu là dưỡng có các lổ nhỏ, sau khi vạch các đự̛ờng tròn nhỏ đó lên chi tiết, dùng đục nhọn, ngắm bằng mắt để núng tâm của các lỗ nhỏ đó.

Như vậy lấy dâu các lố theo dưỡng có thể thực hiện theo ba cách:
1- Láy dáu các đường tròn và sau đó xác định tàm các 10 (để khoan).
2- Lá́y dấu tâm lổ trực tiếp qua lồ bằng dục nhọn.
3- Lấy dấu đường tròn các lỗ nhỏ, sau đó dùng đục nhọn núng tâm các lô, ngắm bằng mắt.

Mởi cách lấy dấu tâm lỗ có những ưu, nhược điểm nhất định:

- Cách thứ nhất không nên dùng khi lấy dấu lô để khoan, nếu lổ có sẵn (đúc sẫn hoặc đã gia công sơ bộ) chỉ còn lạí khoét rộng nên dùng theo cách này (không cần phải xác định tâm của lỗ).
- Cách thứ hai có chi phí thời gian cho lấy dấu ît hơn, nhưng nếu như gá đật đục nhọn không chính xác theo lỗ, khó có thể phát hiện ra sai sót sau khi tháo dưỡng ra khỏi chi tiết.
- Cách thứ ba có ưu điểm là dễ phát hiện sai sốt nếu núng tâm không chính xác theo dấu các vòng tròn của các lố nhỏ trén chi tiết.

2.5. LẤY DẤU KHỐI

1. Sự khác biệt của lấy dấu khối so vởi láy dấu phả̉ng

Chi tiết dù là đơn giản nhất nếu các bề mặt của nó không phải là mặt phẳng thì không nên sử dụng cách lấy dấu phẳng. Những mặt phẳng của chi tiết chỉ sử dụng lấy dấu phả̉ng trong trường hợp khi không có sự liên hệ giữa mặt phẳng đó với các mặt phẩng khác.

Ví dụ trên hình 2.69 là một phôi gang đúc đơn giản. Để khoét rộng và doa lổ trên bề mặt của chi tiết cho đạt yêu cầu, ta cần phải lấy dấu.

Hînh 2.69. Phôi gang đúc

Nếu chúng ta chỉ dùng lấy dấu phẳng nghia là lấy dấu riêng từng mặt, đâu tiên lấy dấu lổ ở mạat trên của chi tiết: dùng tấm gổ phẳng đóng vào lổ để lấy dấu tâm và bôi màu lên bề mặt cần lấy dấu (hình 2.70). Để lấy dấu đường tâm $I-I$ dùng dụng cụ chia khoảng cách $a-a, b-b$ thành hai phần bằng nhau và dùng thước vạch đường tâm I - I. Tiếp tục chia đôi tương đôi khoảng cách $\mathrm{c}-\mathrm{c}, \mathrm{d}-\mathrm{d}$, lấy thước kẻ dường tâm II - II vuồng góc với đường dấu I -
 I để xác định tâm lỗ giữa. Sau khi có tâm, dùng com pa vạch dấu dường tròn cho lổ giữa ở mặt trên.

Sau đó lật ngược phôi đúc, cũng bằng cách tương tự để lấy dấu cho lổ ở mặt phía dưới.

Khi đó, chỉ trong trường hợp phôi đúc hoàn toàn chính xác, tất cả các kích thước phôi như trên bản vẽ thì dấu tâm của lổ giữa ở mặt trên mới hoàn toàn trùng với dấu tam của lổ giữa ở mặt dưới.

Hinh 2.70. Lấy dấu mạ̣t trên của phỏi đúc
Thông thường, phôi đúc không tránh khỏi bị xê dịch và các sai lệch khác so với bản vẽ. Ví dụ trong hình 2.69 , lô đúc a và c có thể bị đả̉y lệch, tai b có thể bị xê dịch, các kích thước khác có thể sai khác, mà khi lấy dấu lại láy theo từng mặt phẳng riêng biệt, dựa theo các bề mặt chưa qua gia công, do đố dù ta lấy dáu rất chính xác cho từng mặt phẩng thì dấu lâm của lổ trên mặt phẳng này sē không bao giờ trùng với dấu tâm của lỗ trên mặt phẳng kia.

Hinh 2.71. So sánh sự trừng khớp đường đấu ở mặt trên vả mạ̣t dưới của chi tiết

Trên hình 2.71, khi nhìn từ dưới lên, lổ ở trên thể hiện bằng nét đứt, ta thấy đường tròn lấy dấu ở mặt trên và mặt dưới bị lệch nhau, mà theo yêu cầu thì chúng phải trùng khít nhau.

Trong quá trình lấy dấu từng mạt phẳng riêng biệt, mạ̣c dù lấy dấu rất chính xác, nhưng ở phôi đúc, mặt trên đã bị sai lệch so với mặt dưới, và chúng ta đã đem sai lệch này một cách tự động vào trong quá trình lấy daíu. Ngay cả khi sai lệch phôi đúc không có thì trong quá trình lây dáu các mạat phảang riêng rẽ, ta đã lấy các mặt thô khác nhau làm chuẩn do đó sự trùng khít của các đường dấu trên hai mặt phẳng là khó có thể thực hiện được.

Két quả lấy dấu còn sai khác nhiều hơn trong trường hợp khi lấy dấu trên các mạat phẳng không liên quan đến nhau đối với phôi có kết cấu phức tạp, khi các mặt phẳng không song song hoạac vuông góc với nhau. Vì vạy để bảo đảm độ chính xác chỉ có thể lấy dấu khối.

Điểm khác biệt giữa láy dấu khối và lấy dấu phẳng là lấy dấu khối vạch dấu trên bề 'mật có hình dáng bất kỳ, có góc nghiêng khác nhau nhưng có được mối liên hệ chặt chẽ giữa đường vạch dấu của bề mặt này so với bề mặt khác.

Để thực hiện điều đó, khi lấy dấu khới, chi tiết gá đặt trên bàn phẳng lấy dấu không phải trên một mặt bất kỳ nào của chi tiết mà cần phải phân tích mối tương quan giữa các bè̀ mặt, chọn lựa và xác định bề mặt đó một cách chính xác so với mặt phằng của bàn láy dấu. Đường vạch dấu trên bề mặt này phải có sự ràng buộc, có mối tương quan so với ưường vạch dấu trên bề mặt khác.

Như vậy có thể thấy khi lấy dấu khối, đường vạch dấu không chỉ đơn thuần là một đường thẳng mà nó là vết của một mặt phẳng cẳt qua chi tiết ở khoảng cách xác định so với mặt bàn lấy dấu phẳng, ở một vị trí tương quan xác định so với các mặt phẳng khác.

2. Các biện pháp cơ bản khi lấy dấu khối

Khi lấy dấu khối, thông thường chi tiết được lấy dấu qua một số vị trí gá đặt trên bàn lấy dấu. Để bảo đảm vị trí tương quan của các đường dấu trên chì tiết, thông thường người ta chọn một trong những bể mặt quan trọng, một trong những đường tâm đối xứng chính của chi tiết đặt song song với mặt phẩng của bàn lấy dấu.

Khi vạch đường dấu nà̀m ngang, chi tiết được gá đặt trực tiếp hoặc kê lớt trên bàn lấy dấu phẳng, rà cho bể mặt hoặc đường tâm đã chọn song song với mặt bàn lấy dấu rồi dùng mũi vạch (thước vạch) có các khoảng cách khác nhau để vạch (hình 2.72).

Hînh 2.72. Vạch các đường dá̛u nầm ngang bầng mưi vạch
a) Vạch đá́u trên khớl họ̣p; b) Vạch dấu trên khới trụ.

Thường trên bề mặt chi tiết cẩn vạch một số đường dấu nằm ngang thì đường vạch dấu đầu tiên là đường dáu chính, cơ bản, còn các đường vạch dấu khác để chỉ quan hệ về vị trí, kích thước so với đường dấu ban đầu.

Khi vạch đường dấu thẳng đứng so với đường dấu nằm ngang đã vạch có thể thực hiện theo ba cách:

1- Dùng thước thọ.
2- Quay chi tiết đi 90°.
3- Dùng mũi vạch dịch chuyển trên các khới hộp thẳng dứng.

Hinh 2.73. Vạch đường dấu thẳng đứng bà̀ng thước thọ

- Vạch các đường dấu thẳng đứng bằng thước thợ (hình 2.73) khi đó thước thợ cần có chân đế rộng bản đặt trên bàn lấy dấu, còn cạnh kia của thước thợ áp sát vào chi tiết cần vạch dấu, dùng mũi vạch đẩy dọc theo cạnh thước thợ để tạo thành các đường vạch dấu thẳng đúng.

Phương pháp này có nhược điểm:

+ Chiều dài đường vạch dấu thẳng đứng bị giới hạn bởi chiều cao của thước thợ.
+ Nếu bề mạat cần vạch dấu thẳng đứng không phẳng (lồi, lõm...), rất khó bảo đảm độ chính xác của dường vạch dấu thẳng đứng.
+ Phương pháp này chỉ dùng vạch dá́u thẳng đứng cho một bề mặt của chi tiết, nếu yêu cầu vạch dấu đường đó liên tiếp trên các mặt của chi tiết thì không thể thực hiện được.
- Vạch các đường dấu thả̉ng đứng bằng cách quay chi tiết đi 90° nghia
là sau khi vach các đường dấu nằm ngang thì quay chi tiét đi 90° để đưa dường dấu thẳng đứng cần vạch thành đường dáu nằm ngang.

Khi đó để bảo đảm vị trí tương quan giưa các đường dáu, cần kiểm tra vị trí chi tiết sau khi quay. Lúc này đương dáu nằm ngang đã vạch sau khi quay trở thành đường dấu thả̉ng đứng, để kiểm tra vị trí thả̉ng dứng này có thể dùng thuơó thọ đặt trên bàn lấy dâu để kiểm.

Hình 2.74a chỉ rō vị trí đâu tiên khi vạch đường dáu nàm ngang I-I, sau khi quay chi tiêt đi 90° và kiểm tra vị trí để đường dáu nằm ngang trở thành dường dáúu thẳng đứng, dùng mūi vạch dể vạch đường dáu II - II. Lúc này dường dáu II - II trở thành dường dáu nằm ngang (hình 2.74 b).

Hînh 2.74. Vạch đường dấu thả̉ng đớng bằng cách quay chi tiết 90°
a) Vạch đường dấu nằm ngang $1-1$;
b) Vạch đường dá̛u thẳng đứng II - II sau khi quay.

Hình 2.75 là trình tự vạch dấu trên chi tiết gối đờ. Trước hết gá đặt chi tiết trên bàn phả̉ng lấy dấu (hình 2.75 a) và vạch các đường dấu nằm ngang. Khi vạch các đường dấu thẳng đứng không dùng thước thợ được vì bề mặt cẩn vạch dấu không phả̉ng, không thể áp sát được với thước thợ, hơn nữa cẩn vạch thêm đường dáúu trên đỉnh gối đỡ, vì thế phải quay chi tiết đi 90°.

Hình 2.75. Vạch đường dấu nằm ngang và thẳng đúng trên chi tiết gới đã
a) Vạch đường dấu nằm ngang: b) Vạch đường da̛u thảng đứng sau khi quay.

Sau khi quay (hình 2.75 b), gối đỡ được kiểm tra bằng thước thợ để bảo đảm vị trí tương quan của vị trí mới so với đường vạch dáu đã vạch. Dùng tnước vạch, vạch dấu ở cả hai mặt đầu cưa 1 ổ và mặt dỉnh của gối đỡ.

Với các chi tiết có hình dạng phức tạp. để kiểm tra sau khi quay, trước đó có thể vạch thêm các đường dấu phụ ở vị trí thích hợp, ở các mặ̣ phẳng thuận tiện cho việc kiểm tra sau khi quay.

Phương pháp này thường dùng cho các chi tiết có trọng lượng vừa và nhỏ, dẽ̉ gá đặt khi quay. Với các chi tiết lớn, nặng, việc nâng, quay gặp khó khān, vì thé trong trương hợp này áp dụng phương pháp thứ ba là nhờ sự trợ
giúp của các khơi hộp dứng. Phương pháp này cũng áp dụng trong trường hợp
 rất khó kiểm tra vị trí của chi tiết sau khi quay.

- Để áp dụng phrơng pháp dùng mũi vach dịch chuyển trên các khơi hợp thẳng đứng, bàn lấy dâu phải đủ rợng, trên bàn có các rã̃nh vuơng góc, có vị trí tương quan xác định dể gá đạt các khối hộp dứng (hình 2.76).

Hình 2.76. Gá đặt các khới hộp thả̉ng đựng

Hình 2.77 là ví dụ vạch dấu thẳng dứng nhờ các khối hộp dứng.

Hình 2.77. Vạch đương dấu thả̉ng đứng nhờ khới hộp đựng
a) Vạch đường dấu nằm ngang;
b) Vạch đường dáu thẳng đứng nhà khối hộp:

1,4,5 - Thước vạch; 2,3-Khối hộp.

Trước hết, đặt chi tiết lên bàn lấy dấu, vạch đường dấu nằm ngang I - I (hình 2.77 a). Nếu sau đó quay chi tiết đi 90°, việc gá đặt, kiểm tra chi tiết rất khó khān. Vì vậy trên bàn lấy dấu gá đặt các khối hộp thẳng đứng (hình 2.77 b) ở vị trí xác định.

Khi đó, gá đặt chi tiết lên bàn lạ́y dâu, kiểm tra vị trí tương quan của chi tiết so với bàn và các khới hộp, dùng thước vạch 1 để vạch đường dấu nà̀m ngang trước, sau đó dùng thước vạch 5 trượt trên khối hộp 2 để vạch đường dáu II - II. Ở vị trí vuông góc, thước vạch 4 trượt trên khối hộp 3 vạch dường dấu III - III.

Phương pháp này dùng để lấy dấu chi tiết có kích thước, hình dạng, trọng lượng khác nhau, lấy dáu trong một lần gá đặt chi tiết ở vị trí tương quan xác định so với bàn lấy dấu và khới hộp đứng.

Khi chọn phương pháp vạch đường dấu thẳng dứng cẩn chú ý:

1. Phương pháp dùng thước thợ chỉ áp dụng cho các chi tiết đơn giản, không nên dùng lấy dấu các chi tiết có chiều cao quá lớn, chi tiết có hình dáng phức tạp.
2. Phương pháp quay chi tiết đi 90° là phương pháp thường được sử dụng trong các nhà máy cơ khí, tuy nhiên không nên dùng để vạch dấu các chi tiết nặng, khó kiểm tra sau khi quay. Khi vạch dấu các chi tiết nặng, việc quay chi tiết phải có gá lắp nâng, hạ, quay. Không những vậy công việc gá đặt, kiểm tra, điều chỉnh chi tiết sau khi quay tốn kém rất nhiều thời gian, công sức.
3. Phương pháp lấy dấu thẳng đứng sử dụng sự hổ trợ của các khới hộp rất thích hợp khi lấy dấu các chi tiết nặng, lớn. Phương pháp này chỉ áp dụng khi trên bàn lấy dâu được̣ gia công các rãnh có vị trí tương quan chính xác và có một bộ các khối hộp chuyên dùng để vạch dấu.

Ngoài các đường dấu nằm ngang, thẳng đứng, trong nhiều trường hợp còn cân vạch các đường dấu nghiêng. Khi lấy dấu khới, các đường dấu nghiêng được vạch theo ba phương pháp:

1. Vạch trực tiếp bằng mũi vạch theo thước đo góc hoặc theo mặt dưỡng nghiêng đặt trên bàn lấy dấu.
2. Gá đặt chi tiết nghiêng đi một góc tương ứng trên bàn lấy dấu (góc này được kiển tra bằng thước đo góc hoạ́c mạat dưỡng nghiêng) rồi dùng thước vạch đặt trên bàn lấy dấu để vạch đường dấu nghiêng.
3. Vạch dấu nghiêng bằng cách dựng hình.

Hình 2.78 giới thiệu cách vạch đường dấu nghiêng trên thân hộp giảm tớc bằng thước đo góc vạn năng. Thước đo góc vạn năng được quay ở vị trí 45°. Một mặt của thước được đật trên bàn lấy dấu, còn mặt kia áp sát theo thành của đế hộp. Ở vị trí này dùng mûi vạch để vạch đường dấu nghieng theo thước góc lên thành hộp, đường dáu này dùng để gá đặt khi gia công mặt phẳng a. Để gá đặt, căn chỉnh chính xác khi gia công mặt phẳng a nghiêng góc 45° trên máy công cụ, cần vạch dấu ở cả hai mặt của thành hộp. Mặt phẳng lắp ghép hai nửa của thân hộp giảm tốc được gá đặt song song với mặt phẳng của bàn lấy dấu.

Hinh 2.78. Vạch đường dấu nghiêng bâng thước đo góc vạn năng

Hình 2.79 giới thiệu cách vạch mặt phẳng nghiêng cắt qua mặt trụ. Trong trường hợp này, việc sử dựng thước góc áp vào mặt trụ để vạch dấu trên mặt này là không thể thực hiện được.

Khi đó, người ta gá đặt mặt trụ nghiêng một góc theo yêu cẩu trên bàn lấy dấu (góc đó được kiểm tra bằng. dưỡng nghiêng hoạc thước đo góc). Ở vị trí này có thể dùng thước vạch để vạch đường dấu của mạat phà̉ng cắt mặt trụ ở góc đã cho.

Vạch đường dấu nghiêng khi lấy dấu khối cūng như khi lấy dấu phẳng có thể áp dụng bằng cách dựng hình qua các mối quan hệ hình học như đã trình bày ở phần trên.

3. Trình tự lấy dấu khối

Hinh 2.79. Vạch mật cất nghiêng bà̛ng cách gá nghiêng chi tiết
Trước khi vạch dấu, người thọ lấy dấu cần xem xét kỷ sự tương ứng giữa phôi so với bản vẽ chi tiết. Điều đó có nghĩa là cần nghiên cứu tỉ mỉ bản vẽ chi tiết và quá trình gia công từ phôi để tạo thành chi tiết đó. Đồng thời cần xem xét kÿ lưỡng phôi và xác định phương pháp lấy dấu cho phôi đó.

Trong một số trường hợp còn phải cân nhắc xem có nên vạch dá́u ngay
tất cả các bề mặt hay chỉ cần vạch dấu một số bề mặt, còn các bề mặt khác sẽ được vạch dấu sau khi đã gia công sơ bộ.

Khi xác định phương pháp lấy dấu, cần xác định xem chi tiết sẽ được đạ̃t ở vị trí nào trên bàn phẳng khi vạch dấu và ở vị trí đó sẽ vạch những đường dấu nào để tránh phải lật đii lật lại nhiều lần, không chỉ tốn thời gian mà nhiều khi gầy ra các sai số không cần thiết.

Trong phiếu nguyên công dùng cho công việc lấy dấu phải chỉ rõ vị trí cần gá đặt phôi trên bàn lấy dấu phẳng, cách kiểm tra sau khi gá đạt, bề mặt cần vạch đường dấu tâm chính, cách dùng dụng cụ vạch dấu...

Trên bàn phẳng lấy dấu cũng cẩn thể hiện rō sai lệch của phôi so với bản vẽ, vạch rō lượng dư cần gia công giữa chi tiết và phôi.

Phôi sau khi gá đặt trển bàn lấy dấu có thể được kê kích và kiểm tra để có vị trí tương quan so với mặt phẳng của bàn lấy dấu, nhờ dó sẽ vạch được đường dấu tấm chính, và cũng nhờ đó có thể kiểm tra sai lệch của phôi. Để làm được điều đó, đôi khi cần lấy dấu sơ bộ trước bề mặt cơ bản (chuẩn) của chi tiết, sau khi gá đặt trên bàn lấy dấu và kiểm tra đúng vị trí của phôi rổi mới tiến hành vạch dáu.

Khi vạch dấu, trước hết vạch đường dấu tâm chính, sau đó vạch các đường dấu còn lại. Thông thường, đầu tiên vạch các đường dấu nằm ngang, sau đó là các đường dấu thẳng đứng, cuối cùng là các đường dấu nghiêng và đường tròn. Sau khi vạch dấu xong, dùng đục nhọn để núng dấu cho rõ.

Như vậy, lấy dấu khới thường được thực hiện theo trình tự như sau:
1 - Xem xét và kiểm tra sơ bộ phôi.
2 - Nghiên cứu bản vẽ chi tiết và phiếu công nghệ dùng cho công việc lấy dấu.
3. Chuẩn bị phôi trước khi vạch dấu.
4. Gá đặt phôi trên bàn lấy dấu.
5. Kiểm tra vị trí của phôi, vạch các đường dấu tâm chính.
6. Vạch tất cả các đường dấu.
7. Núng tâm các đường dấu đã lấy.

4. Chọn bề mặt đầu tiên (mặt chuẩn) khi lấy dấu

Trên phiếu nguyên công lấy dấu cần chỉ rõ bề mặt đầu tiên cần lấy dấu. Việc chọn bề mặt lấy dấu đâuu tiên là một vấn đề phức tạp, không phải lúc nào cũng chọn đúng, ngay cả đối với người thợ lấy dấu lành nghề. Để làm được điều đó phải hiểu rõ chức nāng, đặc điểm kết cẩu của chỉ tiết, điều kiện làm việc của chi tiết khi lắp trong máy. Vì vậy đưa ra một quy định chung để chọn bề mặt lấy dấu đầu tiên - mặt chuẩn - để vạch đường dấu tâm của bất kỳ một chi tiết nào là công việc khó có thể thực hiện dược. Tuy nhiên có thể tham khảo một số quy tắc định hướng như sau:
tất cả các bề mặt hay chỉ cần vạch dấu một số bề mặt, còn các bề mặt khác sẽ dược vạch dấu sau khi đã gia công sơ bộ.

Khi xác định phương pháp lấy dấu, cần xác dịnh xem chi tiết sẽ dược đặt ở vị trí nào trền bàn phẳng khi vạch dấu và ở vị trí đó sẽ vạch những đường dấu nào để tránh phải lật đi lật lại nhiều lần, không chỉ tốn thời gian mà nhiều khi gây ra các sai số không cần thiết.

Trong phiếu nguyên công dùng cho công việc lấy dấu phải chỉ rõ vị trí cần gá đạat phôi trên bàn lấy dấu phẳng, cách kiểm tra sau khi gá đặt, bề mặt cần vạch đường dấu tâm chính, cách dùng dụng cụ vạch dấu...

Trên bàn phẳng lấy dấu cũng cần thể hiện rõ sai lệch của phôi so với bản vẽ, vạch rõ lượng dư cẩn gia công giữa chi tiết và phôi.

Phôi sau khi gá đặt trển bàn lấy dấu có thể được kê kích và kiểm tra để có vị trí tương quan so với mặt phẳng của bàn lấy dấu, nhờ đó sẽ vạch được đường dấu tâm chính, và cūng nhờ đó có thể kiểm tra sai lệch của phôi. Để làm được điều đó, đôi khi cần lấy dấu sơ bộ trước bề mặt cơ bản (chuẩn) của chi tiết, sau khi gá đặt trên bàn lấy dấu và kiểm tra đúng vị trí của phôi rồi mới tiến hành vạch dấu.

Khi vạch dấu, trước hết vạch đường dấu tâm chính, sau đó vạch các dường dấu còn lại. Thông thường, đầu tiên vạch các đường dấu nằm ngang, sau đó là các đường dấu thẩng đứng, cuối cùng là các đường dấu nghiêng và đường tròn. Sau khi vạch dấu xong, dùng đục nhọn để núng dấu cho rõ.

Như vậy, lấy dáu khới thường dược thực hiện theo trình tự nhự sau:
1 - Xem xét và kiểm tra so bộ phôi.
2 - Nghiên cứu bản vẽ̃ chi tiết và phiếu công nghệ dùng cho cơng việc lấy dấu.
3. Chuẩn bị phôi trước khi vạch dấu.
4. Gá đặt phôi trên bàn laly dấu.
5. Kiểm tra vị trí của phôi, vạch các đường dấu tâm chính.
6. Vạch tất cả các đường dấu.
7. Núng tâm các đường dâu đã lấy.

4. Chọn bề mặt đầu tiên (mặt chuẩn) khi lấy dá́u

Trên phiếu nguyên công láy dấu cần chỉ rõ bề mặt đầu tiên cần lấy dấu. Việc chọn bề mặt lấy dấu đầu tiên là một vấn đề phức tạp, không phải lúc nào cũng chọn đúng, ngay cả đối với người thợ lấy dáu lành nghề. Để làm được điều đó phải hiểu rõ chức năng, đặc điểm kết cấu của chi tiết, điều kiện làm việc của chi tiết khi lắp trong máy. Vì vậy dưa ra một quy định chung để chọn bể mặt lấy dấu dầu tiên - mặt chuẩn - để vạch đường dấu tâm của bất kỳ một chi tiê̂́t nào là công việc khó có thể thực hiện được. Tuy nhiên có thể tham khảo một số quy tắc định hướng như sau:

1. Nếu có một bề mặt chi tiết đã được gia công thì nên bắt đầu từ bề mặt đó.
2. Nếu chi tiết có thành vách mà chiều dày của thành có ý nghĩa quan trọng do yêu cầu về kết cấu thì khi lấy dấu cần tính tới yêu cầu đó.
3. Nếu chi tiết có bề mặt không gia công thì nên bắt đầu từ bề mặt không gia công dó.
4. Nếu bề mặt trong và ngoài của chi tiết không gia công thì nên chọn bắt đầu từ bề mặt ngoài.
5. Khi trên chi tiết có vấu lồi hoạ̣c các lổ, khi vạch đường dấu tâm cần phải bắt đầu từ các đặc điểm đó.
6. Nếu phôi bị lệch tâm, các bề mặt bị xê dịch hoăc có các khuyết tật khác, khi lấy dấu tâm cần tính tới các yếu tố này để khắc phục chúng trong khi gia công.
7. Bắt đàu lấy dấu từ bề mạat thô nào thì tất cả các kích thước còn lại đều phải được tính từ đó.

Ta hãy xem xét ví dụ sau:
Trên hình 2.80 a, yêu cầu lấy dấu để gia cong lổ chính sau khi mặt đế dưới đã gia công. Vì mặt đế dưới đã gia công, người thợ lấy dấu cần bắt đầu từ mặt đó vạch đường dấu tâm I - I để bảo đảm kích thước chiều cao H , do đó nếu lỗ đúc bị lệch sẽ làm chiều dày thành gối đỡ (t) không đều, chi tiết dê thành phế phẩm.

Trong trường hợp mậ đế dưới thô (chưa gia công), (hình 2.80 b), áp dụng các quy tấc lấy dấu ở phần trên ta thấy: Bắt đầu từ bề mặt không gia công a để bảo đảm thành dày lổ đều còn bề mặt b để bảo đảm chiều dày h của chân đế. Khi đó ta nên bất đầu từ mặ a đêể vạch đường đấu $\mathrm{I}-\mathrm{I}$, kiểm tra kích thước H từ đường dấu $\mathrm{I}-\mathrm{I}$, xem xét lượng dư gia công tại mặt đế, nếu thấy không dủ lượng dư thì phải chuyển dường dấu I-I dịch lên trên. .

Ngược lại, nếu lượng dư lớn và chiều dày đế mỏng thì phải dịch đường dấu tâm $\mathrm{I}-\mathrm{I}$ xuống dưới để bảo đảm kích thước h của đế.

Hinh 2.80. Lầy dấu lỗ chính trên gới đơ
a) Vạch đường dấu tâm lỗ sau khi đả gia cơng mặt đáy; b) Vạch đường dấu tâm lỗ và mặt đáy khi mật đáy chưa gia công.

Sau đây ta xét một ví dụ khác:
Khi lấy dấu cho chi tiết ống gang đúc (hình 2.81), ta xét hai trường hợp: khi chỉ gia công lỗ và khi chỉ gia công mặt ngoài ống.

Trường hợp thứ nhật (hình 2.81) khi chỉ gia công lổ: phôi đúc này có lổ bị lệch nhiều, do đó việc đầu tiên là kiểm tra phôi đúc, kiểm tra chiều dày thành ống và công việc lấy dấu chỉ tiến hành khi có đủ lượng

Hinh 2.81. Cách lã́y dấu lỗ của ống đưc dư để gia công lỗ.

Sau đó đóng một tấm gổ phẳng vào lổ để xác định tâm lổ và bôi màu (phấn) lên bề mặt để chuẩn bị lấy dấu. Việc đầu tiên là vạch đường dấu tâm I - I đi qua phần thành mỏng nhất của ống, có thể bắt đầu từ bề mặt ngoài hoặc bề mặt trong đều được. Để vạch đường dấu II - II trong trường hợp mặt ngoài không gia công, nên khi lấy dấu phải dựa theo mặt ngoài để vạch đường dấu II - II (hình 2.81). Láy điểm giao nhau của hai đường dấu làm tâm, vạch dấu đường tròn cần gia công để xác định lượng dư, như vậy sau khi gia công lổ, chiều dày của thành ống sẽ đều.

Trường hợp thứ hai khi chỉ gia công mặt ngoài còn lỗ không phài gia công. Trong trường hợp này cần bắt đầu từ bề mặt lổ để vạch đường tâm II - II, sau khi gia công chiểu dày thành lổ cũng sẽ đều (hình 2.82 a).

Hinh 2.82. Lấy dấu mặt ngoài của ống
a) Dùng tỗ khỏng gia công làm chuẩn để láy dấu mặt ngoài;
b) Dùng mặt ngoài làm chuẩn để lấy dấu.

Nhưng nếu lấy mạ̃t ngoài làm chuẩn để lấy dấu (hình 2.82 b) thì sau khi gia công thành lỗ sẽ không đều, chi tiết trở thành phế phả̉m. Trên hình 2.82 ,
các phần gạch chéo để chỉ lượng dư sẽ cắt khi gia công.
Ví dụ trên cho thấy cùng loại phôi như nhau, nhưng khi chọn bề mặt bắt đầu lấy dấu khác nhau mà không phân tích, so sánh để chọn, thì kết quả lấy dấu sē khác nhau và có thể sinh ra phế phẩm.

5. Chọn vị trí chi tiết khi lấy dấu

Chi tiết khi gá đặt lên bàn lấy dấu không phải đặt ở vị trí bất kỳ nào mà thông thường trước khi lấy dấu, người ta chọn một trong các bề mặt, đường tâm quan trọng nhất để gá đặt song song với mặt phẳng của bàn lấy dấu, hơn thế nữa, sau đó còn phải chọn thứ tự các vị trí lấy dấu tiếp theo căn cứ vào các yêu cầu ky thuật của chi tiết.

Ở vị trí đầu tiên khi bắt đầu láy dấu, người thợ sau khi kiểm tra phôi, cần nghiên cứu và xác định đường dấu tâm đầu tiên cần vạch. Đường vạch dấu này rất quan trọng khi lấy các đường dấu tiếp theo, nhất là khi chi tiết cần phải gá đặt ở nhiều vị trí khác nhau để lấy dấu.

Từ đó, ta thấy dường vạch dấu tâm đầu tiên ở vị trí sao cho có khả năng kiểm tra vị trí của phôi itrên tất cả các mặt khi lấy dáu và thường được bắt đầu từ bề mặt sẽ chọn làm chuẩn khi lấy dấu.

Ta có thể lấy ví dụ sau dể minh hoạ:

Hình 2.83. Chọn vị trl đầu tiên khi la̛y dấu không phù hợp

Ví dụ l: Hình 2.83 là một chi tiết dạng khới hợp bằng gang đúc cần lấy dấu vơi yêu cẩu để cho các mặt ngoài vuông góc và thành hộp dày đều.

Phôi đúc có để lượng dư để gia công, nhưng do thao tác, xếp đặt lõi khuôn bị dịch chuyển khi đúc, do đó tuy mặt ngoài bảo đảm vị trí tương quan (song song), nhưng thành dày của hộp không đều.

Khi lấy dấu, phôi cần gá đặt ở vị trí tương ưng với các đường trục chính: theo chiều dài, chiều rộng và chiều cao khối hộp.
Giả sử vị trí đầu tiên khi lấy dấu như hình 2.83 , sau khi kiểm tra vị trí và lượng dư cho gia công, ta dùng mūi vạch lấy dấu dường dấu đẩu tiên I - I sao cho đủ lượng dư để gia công các mật a, b.

Quay chi tiết đi 90° và gá đặt vào vị trí thứ hai (hình 2.84). Ở vị trí này ta kiểm tra đường dấu đầu tiên bằng thước góc sao cho nó ở vị trí thẳng đứng,

Hinh 2.84. Vị trí thứ hai chọn khi tấy dấu chọn không phù hợp
sau đó dùng thước vạch thực hiện đường vạch dấu thứ hai II - II dùng cho việc gia công bề mặt c, d sau này.

Như vậy có thể thấy, khi vạch dấu như vậy lượng dư vẩn đủ để gia công nhưong chiều dày thành lổ sẽ không dều, thể hiện qua nét đứt trên hình vẽ: ở mặt trên phía bên phải dày hơn so với phía bên trái, còn ở mạt dưới phía bên trái thì ngược lại thành hộp dày hơn so với phía bên phải. Việc vạch lại đường dấu $\mathrm{II}-\mathrm{II}$ cho chiều dày lỗ đều là không thể thực hiện được, vì đường II - II này cần bảo dảm vị trí vuông góc so với đường dấu dầu tiên I - I.

Để khắc phục sai sót này, ta phải lấy dáu lại từ đầu và chọn lại đường vạch dấu ở vị trí đầu tiên.

Để thoả mãn được các yêu cầu đã cho, ta cần chọn vị trí đầu tiên của chi tiết trên bàn khi lấy dấu sao cho chiều dày thành lỗ đểu, khi các bề mặt bên trong không phải gia công. Do đó, vị trí đầu tiên để chọn khi lấy dấu cần liên quan tới các bề mạat này. Vị trí gá đạat như hình 2.83 không thể làm được điều đó. Kết quả hoàn toàn khác khi gá đặt khối hộp ở vị trí trong hình 2.85 .

Ở vị trí này có thể kiểm tra vị trí tương quan của các bề mặt trong không gia công và mặt ngoài so với mặt bàn lấy dấu, sau đó dùng mũi vạch để vạch đường tâm I-I dùng khi gia công mật lớn của chi tiết bảo đảm thành dày của hộp đều.

Vị trí thứ hai của phôi so với bàn lấy dấu cần chọn để có thể dễ dàng

Hinh 2.85. Vị tri đúng của khơi hộp khi bắt đả̉u lắy dáu kiểm tra, xác định độ thẳng góc của đường vạch dấu $\mathrm{I}-\mathrm{I}$ so với mặt phẳng của bàn lấy dấu. Như vậy có thể có hai cách gá đặt cho vị trí thứ hai. Ở cách gá đặt đầu tiên (hình 2.86 a) có ưu điểm hơn vì có thể dể dàng lấy dấu bảo đảm thành dày hộp đều do dựa vào bề mặt trong không gia công (e, f) làm chuẩn để vạch đường dấu II - II song song với chúng và vuông góc với đường vạch dấu ban đầu I-I. Vị trí gá đặt ở hình 2.86 b không thể làm được điểu đó.

Như vậy, qua hai lần gá đặt để lấy dấu các đường I - I, II - II, khi gia công theo đường dấu sẽ bảo đảm chiều dày các thành lổ của khối hộp đều.

Hinh 2.86. Lựa chọn vị trí thứ hai khi lấy dấu
Vị trí thứ ba của khối hộp so với bàn lấy dấu được trình bày trong hình 2.87 . Ơ vị trí này phải kiểm tra cẩn thận bằng thước góc độ vuông góc của các đường dấu I - I và II - Il so với mặt phẳng của bàn lấy dấu, sau đó căn cứ vào lượng dư gia công ở mặt trên và mặt dưới để vạch đường dấu lâm III - III, dùng làm chuả̉n khi gia công mặt trên và mặ̣t dưới.

Cuối cùng dể kết thúc công việc lấy dấu, dùng đục nhọn để núng tâm các đường vạch dấu.

Hình 2.87. Vị trí thứ ba của khối hợp khi lấy dấu

Ví dụ 2: Chi tiết ớng nối (hình 2.88) có yêu cầu đường tâm của tất cả các mạat bích phải nằm trên một mặt phẳng.

Hình 2.88. Gá đạ̣t ống nối ở vị trí đầu tiên khi lấy dấu

Vị trí đầu tiên khi gá đặt là phải đặt, kê mặt ngoài của ống nối sao cho đường vạch dấu tâm đẩu tiên cần đi qua bốn điểm là tấm của bốn mặt bích.

Để làm được điều đó, trước hết cần xác định tâm của các mặt bích bầng cách dùng các tấm gỗ phẳng đóng chặt vào lổ các mặt bích và xác định tâm của chúng.

Sau đó dùng các tấm đỡ, kích để kè chi tiết sao cho tâm của các mặt bích nằm trên một mặt phẳng song song với mặt phẳng của bàn lấy dấu.

Hình 2.89. Vạch đưởng dấu tåm I - I khi tâm của các mặt bich không cùng nằm trên một mặt phẳng

Trong trường hợp các đường tâm này không thể cùng nằm trên một mặt phẳng như vậy (hình 2.89), khi tẩm a, d nằm trên đường tâm $\mathrm{I}-\mathrm{I}$ còn tâm b , c nằm dưới (do sai số của phôi khi đúc), khi đó vạch đường đấu I - I nằm ở khoảng giữa các tâm kể trên. Đồng thời dùng thước góc kiểm tra độ nghiêng của mặt đầu các mặt bích xem liẹu có đủ lượng dư khi gia công chúng. Nếu không, phải điều chỉnh lại để khỏi phải lấy dấu lại từ đầu do không đủ lượng dư ở các vị trí gá đặt tiếp theo khi vạch dấu.

Hình 2.90 a trình bày cách gá đặt chi tiết ớng nối ở vị trí thứ hai, hình 2.90 b là vị trí thứ ba của chi tiết khi vạch dấu.

Hình 2.90. Vị trí thứ hai và thứ ba của chi tiết khi vạch dấu
a) Gá đặt chi tiết ở vị trí thứ hai khi lẫy dấu;
b) Gá đặt chi tiết ở vị tri thứ ba khi lǎy dấu.

Thông thường, trước khi vạch dấu, nếu chi tiết có bề mặt đã gia công sơ bộ thì gá dặt bể mặt đã gia công này lên bàn lấy dấu, khi đó việc gá đặt và kiểm tra trước khi lấy dấu nhanh hơn. Tuy nhiên không phải trường hợp nào cũng dùng như vậy. Ví dụ trên chi tiết óng nối đã trình bày ở trên, giả sử mạat đầu các mặt bích đã gia công và yêu cầu lấy dấu các lỗ lắp bu lông. Mặc dù gá đặt một trong các mặt đầu đã gia công này lên bàn lấy dấu sẽ thuận tiện, nhưng để bắt đầu lấy dấu ống nối vẫn cần phải gá đặt như trong sơ đồ hình 2.88 , bởi vì chỉ ở vị trí này mới xác định được đường vạch dấu qua tâm của tất cả các mặt bích.

Ngược lại, trong trường hợp lấy dấu lổ gối đỡ khi mặt đế của gối đỡ đã qua gia công (hình 2.91).

Hinh 2.91. Gá đạ̣t gối đõ ở vị trí lấy dấu đầu tiên

Khi đó nên gá đạt mặt đế của gối đỡ đã gia công lên bàn lấy dấu, như vậy sẽ bảo đảm khoảng cách quan trọng từ mặt đáy đến tâm gối đỡ, khoảng cách này dược xác định ngay từ lần lấy dấu đâu tiên. Nếu chọn mặt khác sē rất khó làm đự̛̣ đitù đó.

Qua nhưñg ví dụ kể trên, ta thấy việc chọn vị trí đầu tiên khi gá đặt chi tiết lên bàn lấy dấu là rất quan trọng, vì nó ảnh hưởng đến vị trí gá đạ̣t ở lần thứ hai, lần thứ ba và ảnh hưởng tới độ chính xác các đường dấu, ảnh hưởng tới yêu cầu ky thuậ khi gia công theo đường dấu.

Tuỳ theo kết cấu và công dụng của chi tiết, khi chọn vị trí gá đặt của chi tiết để lấy dấu cần chú ý tuân theo các nguyên tắc sau:

1. Khi gá đặt để lấy dấu, một trong các đường tâm chính của chi tiết (thường cho trên bản vẽ chế tạo) phải gá đặt song song với mặt phẳng của bàn láy dấu.
2. Vị trí đầu tiên khi gá đặt để lấy dấu cần chú ý chọn căn cứ vào yêu cầu kỹ thuật, thường bắt đầu từ mặt chuẩn chính.
3. Các vị trí lấy dấu tiếp theo phụ thuộc vào vị trí đầu tiên.
4. Cần chú ý kiểm tra cẩn thận vị trí của phôi ở vị trí gá đặt đầu tiên
5. Nếu một trong các kích thước của chi tiết theo một hướng nào đó quan trọng hơn các kích thước khác (ví dụ: chiều dài quan trọng hơn chiều cao, chiều rộng...), khi đó vị trí gá đặt đầu tiên khi lấy dấu cần chọn tương ứng để dường vạch dấu chính theo dúng hướng đó.
6. Vị trí gá đặt lần thứ hai khi lấy dáu và các lần khác cần chọn căn cứ vào các yêu cầu kỹ thuật và vị trí tương quan so với mặt chuẩn đầu tiên.
7. Khi các điều kiện để lựa chọn tương đương nhau, khi đó cần tính đến mức độ thuận tiện và nhanh chóng khi gá đặt và kiểm tra chi tiết khi lấy dấu.

6. Lấy dấu lại và lấy dấu phụ

Khi gia công chi tiết, có trường hợp không chỉ lấy dấu mợt lần trước khi gia công mà trong quá trình gia công cơ khí, chi tiết có lúc phài quay lại bàn lấy dấu để láy dáu lại.

Khi lấy dáu lại, người thơ lây dáu cấn hình dung toàn bọ trình tư gia công chi tiết dể vạch dâu mới, ràng buọc các dấu này với các dấu đả có trước và phương phâp gia cơng. Nếu các rà̀ng buộc này không đảm bảo, chi tiết có thé trở thành phế phẩm.

Ngoài ra người thợ láy dáu cần biết rõ trình tự gia công chi tiết để không vạch dấu thừa, các vết dấu không bị mất đi qua các bước gia công trung gian.

Khi lấy dấu lại trên một phần của chi tiết gia công, người lây dấu trước khi sử dụng các dấu cũ cần kiểm tra lại sai lệch có thể phát sinh trong khi gia công từ các dấu đã lấy. Nếu khi kiểm tra chi tiết, những sai số này không có hoặc phát hiện có sai lệch nhưng tại các chỗ không quan trọng thì người lấy dấu có thể dùng các dấu cũ như các đường dáu tâm. Như vậy quá trình lấy dấu lại sẽ̃ đơn giản hơn và nhanh hơn.

Nếu trong quá trình kiểm tra phát hiện có sự sai khác đáng kể của dấu cũ thì khi đó cần thực hiện theo các cách sau:

Nếu việc vạ̣ch dấu đơn giản, khi đó lấy dấu lại, có tính đến các sai lệch phát sinh khi gia công. Nếu thấy rằng các sai lệch này không thể sửa chữa được thì loại bỏ chi tiết, nếu sửa được thì sửa lại cho đúng.

Trong trường hợp các chi tiết phức tạp, lấy dấu lại mất nhiều thời gian, nhựng nếu có khả năng sửa chữa các sai lệch thì vẩn thực hiện lấy dấu, nếu như không thể thực hiện được tất cả các đường dấu thì lấy lại đường dấu tâm và các đường dấu để sửa lại các sai lệch khi gia công.

Sử dựng dấu cũ không có sự kiểm tra sơ bộ chi tiết sau khi gia công chỉ dùng khi lấy dấu các chi tiết không quan trọng. Trong những trường hợp như thế không phải lúc nào cũng cần phải gá đặt chi tiết lên bàn lấy dấu.

Để đơn giản hoá công việc lấy dấu lại có liên quan với các dấu cū và với công việc gia công, người ta thường lấy dấu phụ. Những dấu phụ này được lấy trên máy bằng dụng cụ cắt trong quá trình gia công chi tiết.

Trên hình 2.92 là một chi tiết nắp chặn, khi gia công cần bảo đảm chính xác khoảng cách l_{1}, l_{2} từ mặt càu a đến tâm lỗ b và tâm lỗ c . Lấy dấu một lần các bề mặt này là không được, bởi vì sau khi gia công bề mặt d trên máy, vết của dấu các lỗ b, c sẽ mất. Vì vậy, khi lấy dấu làn đầu tiên, sau khi kiểm tra phôi đúc, ta vạch dáu đường tâm I - I và II - II. Theo đường dấu tiến hành gia cong mặt cầu a và bể mặt d trên máy tiện đứng.

Sau khi gia công, ta láy

Hînh 2.92. Vạch đường dấu phụ trên nâp chặn dấu lại, khi đó việc lấy dấu các lổ b, c sẽ gặp khó khẵn bởi v̀̀ các vết dấu cũ dã mất. Để tránh khó khăn đ6, sau khi gia công bề mật a, d, người thợ tiẹn đưa dao tiện mũi nhọn vào láy dâu mợt đường tròn trên mặt d đả gia cong. Đường tròn này chính là đường dâu phụ. Đường dấu phụ này làm đơn giản đi nhiéu quá trình lấy dấu lại, bảo đảm vị trí tương quan chính xác giữa mặt càu lõm đã gia công với các đường dâu tiép theo để gia công các lổ b và c .

Đường dấu phụ không chỉ đùng khi lấy dấu lại mà nó còn cho phép giảm nhẹ việc gá đặt và kiểm tra vị trí chi tiết trên máy khi gia công cûng như khi lấy dấu (kiểm tra sau khi quay chi tiết và gá đặt vào vị trí mới).

Khác với các đường dấu để gia công, đường dấu phụ cũng như đường dấu kiểm tra khơng được dùng đục nhọn để núng tâm đ̛̛̣ờng dấu.

Câu hỏi

1. Lấy dấu là gì? Tại sao cần phải lấy dấu?
2. Các dạng lấy đấu?
3. Các loại gá lắp dùng khi vạch dấu?
4. Các loại dụng cụ dùng khi vạch dấu?
5. Các loại dụng cụ dùng để đo, kiểm tra khi vạch dấu?
6. Tư thế và vị trí của mũi nhọn khỉ vạch dấu?
7. Tư thế của thước đúng khi vạch dấu?
8. Tư thế của müi nhọn khi núng dáu?
9. Các sai lệch, hư hỏng khì vạch đấu?
10. Thứ tự các bước khi vạch đấu phẳng?
11. Các phương pháp vạch các đường dấu vuông góc?
12. Hãy nêu các cách dựng hình khi vạch các đường dấu song song và vaông góc?
13. Cách dựng mợt đường dấu nghiêng theo bản vẽ?
14. Độ dốc $1: 5$ trên bản vẽ có nghĭa là gì?
15. Có các cách gì đẻ̉ dựng một góc cho trước?
16. Thế nào là vạch dấu khới? Vạ̣h dảu khóí khác vạch dâu phẳng thế nào?
17. Hãỷ nêu các cách vạch đường dấu thẳng đứng khi lấy dấu khố?
18. Hãy nêu ưu, nhược điểm của phương pháp lấy dấu thẳng đứng bằng thước goc?
19. Láy đường dấu thẳng đứng bằng cách quay chi tiết 90° thường dùng trong trường hợp nào?
20. Trình tự các công việc cần thực hiện khi lấy dấu khối?
21. Bể mặt chuẩn hay bề mạt đầu tiên chọn khi lấy dấu là bề mật như thế nào? Những quy tác khi chọn bê mặt này?
22. Vị trí đầu tiên của chi tiết trên bàn láy dáu cần phải chọn như thế nào?
23. Sự khác nhau giữa vị trí đầu tiên và các vị trí khác của chi tiết trên bàn Háy dấu?
24. Các nguyên tắc khi chọn vị trí của chi tiết trên bàn láy dáu?
25. Lấy dấu lại là gì? Trong trường hợp nào cần lấy dấu lại?
26. Vì sao khi lấy dấu lại không phải lúc nào cũng sử dụng các vếl dấu cū?
27. Đường dấu phụ là gì? khi nào cần phải có dường dấu phụ?

Chương 3

ĐỤC KIM LOẠI

3.1. KHÁI NIẸM

Đục là nguyên công gia công nguội dùng dụng cụ là đục và búa để bóc di một lớp kim loại trên chi tiết cần gia công.

Đục được dùng khi gia công chi tiết không cần đọ chính xác cao, là phương pháp gia cơng bầng tay với những dụng cụ đơn giản, không cần dùng các máy móc phức tạp.

Đục cuang được sử dụng dể loại bỏ các rìa mép vạt dúc rèn, lớp vỏ cưng kim loại, làm tù các cạnh sấc, đục các rănh then, rãnh dău đé̉ bơi trơn, phát hiện các vết nứt, các khuyết tật khi hàn. Ngoài ra đục còn dùng dế chặt, cắt các tấm, phiến kim loại.

Khi đục các chi tiết lớn, vật cần đục được đặt trên đe hoặc đé thép, còn đa phàn các chi tiết được kẹp chặt trên êtô nguội khi thực hiện công việc đục.

Đục có thể chia ra đục thô, đục tinh; đục thô khi lớp kim loại được bóc đi có chiều dày $1,5-2 \mathrm{~mm}$, còn đục tinh: $0,5-1 \mathrm{~mm}$.

3.2. DỤNG CỤ DU̇NG KHI ĐỤC

Đục dùng khi gia cong phôi nung nóng trong phân xường rèn thường gọi là đục xấn, đục dùng khi gia công nguội là đục nguội.

Đục nguội (hình 3.1 a) được chế tạo từ thép cacbon dụng cụ Y7A hoặc Y8A bao gồm phần lưỡi cắt, thân và cán đục. Phần lưỡi cắt 1 được tôi cúng và được mài vát tạo cạnh sắc để lấy phoi khi đục. Chiều u rộng phần luỡi cắt $20-25 \mathrm{~mm}$. Góc của phẩn làm việc 2 được chọn tuỳ theo độ cưng của của chi tiết cần đục, độ cứng của vật cần đục càng cao thì góc càng lớn, góc là 70° khi đục gang, 60° đối với thép, 45° đối với đồng, 35° đối với nhôm, kēm. Phần thân 3 có hình dáng thuận tiện cho người công nhân khi cầm đục thao tác, thường tiết diện có hình dạng ôvan, đa cạnh. Phần cán 4 thường có đạng côn, phía đầu được vê cầu để định tâm cho búa khi đục.

Hình 3.1. Các loại đục

1- Lưở căt; 2- Phần làm viẹ̉c;
3-Thân đục ; 4-Cán đục.

Đục thường có chiĉ̀u dài $100,125,150,175$ và 200 mm . Phần lưỡi cắt và cán được tôi và ram trên chicìu dài $15-25 \mathrm{~mm}$ đạt độ cứng cao nhưng không giòn, phần cán độ cứng không cần cao như phần lưỡi cắt để tránh vỡ mẻ khi gõ búa. Đục (hình 3.1 b) dùng để đục các rãnh then, vát cạnh sắc. Lưỡi cắt 1 của loại đục này thường hẹp, nhỏ.

Mài sắc và tôi đục: Đục sau khi nhiệt luyện hoặc bị cùn trong quá trình sử dụng phải được mài sắc trên máy mài hai đá hoạ̃c máy mài dụng cụ. Khi đó đục được giữ chặt và tỳ trên giá đỡ 1 (hình 3.2), sau đó đả̉y cho đục tiếp xưc với đá mài và di chuyển chậm lưỡi cắt dọc thco chiếu rộng đá mài. Khi mài sắc, không được ấn mạnh đục vào đá mài; trong khi mài nču đục nóng quá ($\mathrm{To}>110^{\circ} \mathrm{C}$) cấn nhúng vào nước dể đục giữ được độ cứng. Cạnh sắc của dục sau khi mài phải có cùng chiču rợng, cùng đô vát ở hai phía, đọ lới 108 m nhỏ hơn $0,5-1 \mathrm{~mm}$ trên chiếu dài lưỡi cất.

Hình 3.2. Mài sắc đự trên máy mải
1-Giá đö; 2-Kinh an toàn; 3-Nắp chắn đá

Đục được chế tạo từ thép cacbon dụng cụ, trước khi mài sấc dược nung nóng và tôi ở nhiệt độ $780-800^{\circ} \mathrm{C}$, làm nguội trong môi trường nước hoặc dầu, sau dó ram ở nhiệt độ $160-180^{\circ} \mathrm{C}$.

Buía ngıội: Búa nguội là dụng cụ được sử dưng rộng rāi trong các công việc nguội như núng dấu, đục, uốn gấp, nắn, tán...

Búa nguội có nhiều loại kết cấu, thông thường gồm hai loại: búa có một đầu vuông hoặc đầu tròn; phía đầu kia của búa được vát nghiêng (hình 3.3).

Búa được rèn từ thép 50,60 hoạac từ thép cácbon dụng cu Y 8 A , ở giữa có lổ ôvan để tra cán gổ vào. Búa dược chia ra theo trọng lượng của chúng: Búa
nặng $100,150,200,300,400,500$ gam thường dùng cho công việc nguội, búa nặng 600,800 gam dùng cho công việc sửa chữa, búa nặng $4-16 \mathrm{~kg}$ thường là các loại búa rèn (dùng cho các công việc nặng).

Hình 3.3. Búa nguội
a) Búa đấu vuông; b) Búa đấu tròn; c) Búa cơ đấu bầng vật lị̣̂u mến khác (đơng, chi...)

Khi chọn búa nguọi thường căn cứ vào lượng kim loại cẩn lấy đi và thao tác của công nhan. Ví dụ: khi dùng đục chặt, mời milimet chiều rộng lưỡi cát của đục yêu cå̉u bủa co trọng lự̛ng 40 g , còn khi dùng đục bóc các lớp kim loại, cần búa có trọng lượng 80 g cho 1 mm chiếu rợng lưỡi cất của đục.

Cán bứa được làm bằng gỗ cứng, không giòn, có đọ đản hồi. Chiều dài cán búa được chọn theo loại búa: loại búa nặng có chiều dài khoảng 400 mm , loại trung bình có chiều dài $320-350 \mathrm{~mm}$, loại búa nhỏ có chiều dài $250-$ 300 mm , (bảng 3.1). Sau khi tra cán vào búa phải dùng chêm bằng gỗ, kim loại có khía cạnh, chiều dày $1,5-2 \mathrm{~mm}$ đóng thêm vào cho chắc, bảo đảm an toàn khi dùng búa thao tác.

Bảng 3.1. Các số liệu khi chọn búa nguội

Trọng Lương búa (gam)	50	100	200	300	400	500	600	800	1000
Công viẹ̣c thực hiệ̣n	Nhẹ		Vữa		Nặng				
Chiều dài cán búa (mm)	$250-300$	$320-350$	400						

Ngoài các loại búa bằng thép, trong một số trường hợp nhuu khi sửa chữa, láp ráp có thể đùng búa có gấn ở đầu búa vật liệu mềm như đồng, chì để tránh gây biến dang cho chi tiết khi tháo, láp chi tiết.

Khi dùng búa thao tác trên các tấm kim loại mòng có thể dùng búa gō, cao su cưng...

3.3. CO KHI HOÁ KHI ĐỤC

Đục bằng tay có năng suất thấp, tớn cơng sức. Để nâng cao năng suất có thé cơ khí hoá khâu đục bà̀ng các loại:

- Đục bằng búa điện hoạ̣c khí nén.
- Sử dưng các dụng cụ, gá lấp chuyên dùng.
- Sử dụng máy chuyên dùng.

Hình 3.4 là mật cắt của một búa hơi (khí nén) để dục. Búa hơi sử dụng không khí sạch nén dưới áp lực $5-6 \mathrm{~atm}$ dẵn qua ớng mềm, vào qua rãnh 5 , tác dụng vào phía bên phải của pit-tông 1 , dẩy pit-tông tác động các xung lực vào đầu búa để đục, phần khí dư bên trái xi lanh qua rãnh 9 , rãnh vòng 6 , rănh 4 thoát ra ngoài không khí. Só xung của búa hoi có thể đạt từ 1000 đến 2400 lần trong mọt phút với lưu lượng khí nén $0,5-0,6 \mathrm{~m}^{3} /$ phút. Năng suât gấp $4-5$ lản so vơi đục bằng tay.

Hinh 3.4. Búa hơi đé đục
1- Pit-tông; 2- Van trự̛̣; 3, 4, 5, 6, 7, 8, 9 - Rảnh dẫn khi.
Ở cứi hành trình là̀m việc, khí nén được đưa vào rã̃nh 3 , rãnh 7 tác dụng vào van 2 , đưa khí nén qua rã̃h 9 thực hiện hành trình đẩy pit-tông ngược lại, phần khí dư thoát ra không khí qua rãnh 8.

3.4. KY̌ THUẬT ĐỤC

Khi đục, cách nắm giữ dụng cụ có vai trò quan trọng. Búa cầm trên tay

ở khoảng cách $15-30 \mathrm{~mm}$ kể từ đầu chuôi, đục được giữ bằng các ngón tay ở khoảng cách $20-25 \mathrm{~mm}$ so với mặt đấu cán đục (hình 3.5).

Hinh 3.5. Cách nảm giữ dụng $c \not ̣$ khi đưc
a) Cách cấm búa; b) Cách gĩ̛̛ đ̛̛̣c đủng và không đúng

Đục dược giử ở vị trí cần đục và nghiêng một góc $30-35^{\circ}$ so vơi bề mặt cần đục, lưỡi cất dọc theo đường vạch dấu. Nếu gớc nghiêng nhỏ, dục dễ bị trượt trên bề mặt gia công, còn nếu góc nghiêng lớn quá dễ làm kim loại bị gấp, không bằng phẳng.

Tư thế đứng của công nhân khi thao tác (hình 3.6): người đứng thẳng, không cúi nghiêng, chân trái dứng lên phía truớc và tạo thành góc 70° so với má êtô, chân phải lui về phía sau tạo thành góc 45° so với dường tâm của êtó.

Hình 3.6. Vị trí chận (a) và tay (b) công nhân khi đục

Tư thế vung búa khi đục có ảnh hưởng tới chất lượng đục (hình 3.7): tư thế (a), lực tác động là từ cổ tay; tư thế (b), lực tác động từ khuỷu tay; tư thế (c), lực tác động là lớn nhất của cả vai, khuỷu tay và cổ tay.

Hinh 3.7. Tư thế vung búa khi đục
a) Ngang tai; b) Qua đầu; c) Ngang vai.

Năng suất khi đục phụ thuộc vào chiều dày của mối lớp kim loại bóc đi. Chiều dày này phụ thuộc vào lực đánh búa của người thợ, trọng lượng búa, độ cứng của chi tiết cần gia công.

Để nâng cao nāng suất và giảm khả năng sinh ra sai hỏng khi đục cẩn chú ý:

1. Chia lớp kim loại cần đục ra làm hai bước: bước đục thô có chiều dày: $1,5-2 \mathrm{~mm}$, còn bước đục tinh: 0,5-1 mm .
2. Khi đục bể mặt có chiều rộng lớn, nên dùng đục có lưỡi cất hẹp đục các rãnh trước, sau đó dùng đục có lưỡi cắt lớn để đục lớp kim loại giữa các rãnh đã có trước đó.
3. Khi đục các kim loại giòn (đồng vàng, gang đúc...) ở các mép cạnh dể bị sứt, mè̉; khi đó nên đục cẩn thận, nhẹ nhàng từ mép cạnh vào bên trong bề mặt.
4. Khi đục các kim loại mềm (đồng đỏ, thép mềm...) cần chú ý thường xuyên lau sạch lưỡi đục bằng giẻ thấm dầu hoặc nước sạ̣ch để tránh phoi kim loại dính bết vào lưỡi đục.
5. Khi đục gần hết lớp kim loại, lực tác động vào đục nên giảm dần.

Khi đục chi tiết kẹp trên êtô, nên kẹp sao cho lớp kim loại bóc đi song song với mặt trên của má êtô, đục được gá nghiêng một góc 30° (hình 3.8a) Sau khi bóc đi lớp kim loại đầu tiên, chi tiết được kẹp lại cao hơn má êtô $1,5-2 \mathrm{~mm}$ và đục lớp kim loại tiếp theo, và cứ tuần tự làm nhự vậy cho đến khi chạm đường vạch dấu.

Hình 3.8. Eục bóc kim loại
a) Đục theo cạnh má êtồ; b) Đục theo đường vạch dấu.

Khi dục theo dường vạch dấu (hình 3.8 b), trên phía mặt đối diện của phôi được vát cạnh một góc 45° để dễ gá đặt đục và ngăn ngừa khả năng sứt mẻ cạnh của chi tiết làm từ vật liệu giòn. Chi tiết được kẹp trên êtô sao chọ nhìn thấy rõ dường vạch dấu. Khi đục, ban đầu để đục nằm ngang, sau đó mới đưa đục nghiêng đi một góc theo quy dịnh. Chiều dày lớp kim loại bóc đi $1-1,5 \mathrm{~mm}$; riêng lớp cuói $0,5 \mathrm{~mm}$.

Đục bế mặt rộng bản (hình 3.9), đầu tiên đục các rãnh hẹp (a) bằng đục có chiẹ̀u rộng lưỡi cắt nhỏ, sau đó dùng đục rộng bản đục các phấn còn lại (b). Khi đó quá trình đục sẽ dê dàng, nhanh hơn. Đб́i với kim loại giòn, khi đó không đục hết rānh để tránh sứt mẻ cạnh, phần kim loại còn lại sẽ được bóc đi khi đục từ phía ngược lại.

Hinh 3.9. Đục bề mặt rộng bản
a) Đục rānh hẹp; b) Đục rảnh rộng.

Đục kim loại dạng tròn xoay (hình 3.10 a), sau khi vạch dấu vị trí cần dục, chi tiết được gá đặt trên mặt đe, dục giữ ở vị trí thẳng đứng. Đầu tiên dùng búa đục nhẹ tạo thành vết cắt trên dấu, sau đó vừa quay chi tiết vửa đục mạnh hơn cho đến khi đạt chiều sâu để có thể đập bẻ gãy phần chi tiết đã đục.

Hinh 3.10. Đục cắt kim loại
a) Chi tiết tròn xoay; b) Chi tiết tấm day; c) Chi tiêt tám mỏng.

Khi đục kim loại dạng tấm, phiến (hình 3.10 b), dùng đục từ hai phía trên, dưới; mõi phía đục sâu khoảng một nửa chiều dày của tấm kim loại.

Đục kim loại dạng tấm mỏng (hình 3.10 c), thứ tự công việc thực hiện như sau:

- Dùng dưỡng (mẫu) vạch dấu biên dạng chi tiết lên tấm kim loại.
- Đặt tấm cần đục lên mặt đe, dùng đục để đục sợ bộ cho rõ nét đường vạch dấu.
- Dục với lực lớn hơn để tạo thành chiều sâu vết đục.
- Lật ngược chi tiết và dục trên mặt đối diện theo đường vết từ phía đã dục.

Đối với các tấm kim loại dày ($>8 \mathrm{~mm}$) không dùng được cách đục kiểu trên. Khi đó có thể dùng các kiểu khác như khoan lổ xung quanh biên dạng rồi đục cắt, sửa nguội hoạ̣c cắt bằng hơi hàn.

Khi đự kim loại cần chú ý các biện pháp bảo đảm an toàn lao động:

1. Búa dùng khi đục phải tra vào cán chấc chắn, đầu búa không bị sứt mẻ.
2. Không dùng đục cùn, tù và phần lưỡi cắt của đục bị sứt mẻ.
3. Khi đục chi tiết kẹp bằng êtô lắp trên bàn nguội, cần có lưới kim loại che chắn, bảo vệ, đề phòng mảnh kim loại có thể văng ra trong quá trình thao tác.

Câu hỏi

1. Đục là gì? Đục được sử dụng khi nào?
2. Dụng cụ dùng khi đục là gì? Kết cấu của mũi đục?
3. Cách tôi và mài sắc đục sau, khi tôi?
4. Các biện pháp cơ khí hoá để nâng cao nāng suất khi đục?
5. Cách cầm dụng cụ và thao tác khí đục?
6. Các biện pháp để náng cao nãng suất và giảm khả năng sinh ra sai hỏng khi dục?
7. Các thaọ tác khi dục bề mặt kim loại rộng bản?
8. Thứ tự thao tác khi đục bề mặt dạng tấm mỏng?
9. Các biện pháp bảo đảm an toàn lao động khi đục?

Chương 4

GIŨA KIM LOẠI

4.1. KHÁl NIỆM

Giũa kim loại là phương pháp gia công nguội hớt đi một lớp kim loại trên bề mặt của chi tiết gia công bằng dụng cụ lạ cái giũa.

Giŭa dùng để sửa nguội các chi tiết khi lấp ráp, giũa nguội tạo nên chi tiết có hình dáng, kích thước yêu cầu, sửa các mép cạnh chi tiết trước khi hàn.

Giũa chia ra giũa thô và giũa tinh, độ chính xác khi giũa đạt $0,05 \mathrm{~mm}$, nếu giūa cẩn thận có thể đạt $0,02-0,01 \mathrm{~mm}$. Lượng dư khi giūa từ 0,025 đến 1 mm .

4.2. CÁC LOẠI GIŨA

Giũa gồm nhiều loại có vật liệu, hình dáng, chiều dài, bước băm giūa khác nhau. Thông thường giũa được làm từ thép cacbon dụng cụ $\mathrm{Y} 8, \mathrm{Y} 9, \mathrm{Y} 10$, Y12... Trên mạat giũa, các vân giưa dược băm bằng nhiều phương pháp: trên máy băm giũa bằng dụng cụ chuyên dùng, phay trên máy phay, chuốt trên máy chuốt và mài trên máy mài bằng dá chuyên dùng.

Hình dạng và các thông số hình học của các vân giũa (răng) tuỳ thuộc vào phương pháp tạo vân (bảng 4.1).

Bảng 4.1. Hình dạng và các thơng só hình học của răng giuna

a)
b)

Răng giũa

Hinh 4.1. Giũa
a) Kết cá̛u; b) Vết băm trên giũa; c) Răng trên giũa.

Hình 4.1 giởi thiệu kết cấu của giũa dẹt bao gồm thân giũa có các vân giũa (răng) để tạo phoi khi giũa, cuới thân giũa được vát nhọn để đóng chặt vào cán giũa bà̀ng gỗ.

Các dạng vân giũa: Vân giũa là các vết khía, rāng băm trên thân giũa để tạo thành các lưỡi cắt tạo phoi khi giũa (hình 4.1 c) Có nhiều loại vân giũa: loại có vân một chiều, loại có vân theo hai chiều chéo nhau, loại có vấu (hình 4.1 b).

- Giũa có vân theo một chiều thường dùng để giũa các kim loại mềm (đồng thau, kẽm, bacbit, thiếc, nhôm, đồng đỏ...) có độ bền thấp. Ngoài ra còn dùng để mài sắc lưỡi cưa, xẻ gổ. Góc nghiêng của vân giũa khi bām là $70-80^{\circ}$ so với dường tâm giũa.
- Giũa có vân theo hai chiều, chéo nhau thường dùng để giũa kim loại cứng (thép, gang...) có độ bền cao, chiều dài luỡi cắt tạo phoi ngắn, dể lấy phoi hơn so với dùng giũa có vân một chiều. Vân của loại giũa này gồm đường vâ̂n dưới (cơ sở) nghiêng một góc 55°, còn đường vân trên chéo một góc $70-80^{\circ}$ so với thân
giũa. Như vậy góc giữa hai vân chéo nhau là $70+55=125^{\circ}$ là góc thích hợp nhất để bảo đảm năng suất cao khi giũa các kim loại cứng.
- Giũa gổ bao gổm các vấu hình tháp lồi trên bề mặt làm việc để tạo thành các răng giũa lớn (thô) hay nhỏ (mịn). Loại này thường dùng giūa các vật liệu mềm (gổ, cao su, xương, sừng...), nhờ các vấu này có thể tạo nên lượng phoi lớn mà phoi không lấp đầy rãnh như khi dùng giũa kim loại thông thường.

Hình 4.2. Các loại giũa
a) Giūa dẹt; b) Giūa vuơng; c) Giũa tam giác; d) Giũa tròn;
d) Giưa löng mo; e) Giữa hình thoi; g) Giüa hinh lươi dao

Các loại giña: các loại giūa được chia ra theo dạng vân giũa, hình dáng tiết diện ngang của thân giũa, biên dạng giūa cể gia công các dạng bề mặt khác nhau.

Hinh 4.2 trình bày các loại giũa và dạng bề mặt gia công bằng giũa. Giũa dẹt dùng để giũa các mặt phả̉ng trong, ngoài, mặt ngoài lồi (hình 4.2a). Giũa vuông (hình 4.2 b) để giūa các lổ, rãnh vuông và các rãnh khác. Giũa tam giác (hình 4.2 c) để giũa các góc trong rãṇh, các lỗ đa giác... Giūa tròn (hình 4.2 d) để vê tròn các cung lượn, giũa các lỗ của sản phẩm. Giũa lòng mo (hình 4.2 d) để giũa các bề mạat cung lồi, lõ̃m. Ngoài ra còn các loại khác như giũa hình thoi, giũa ôvan, giüa hình lưỡi dao...

Bảng 4.2 giới thiệu lượng dư, độ chính xác và độ nhẵn bóng bề mạat khi giũa thô, giũa tinh và giũa mịn.

Bảng 4.2. Độ chính xác và chất lượng bề mặt khi giũa

Dạng gia công	Loại giũa	Lượng dư gia công (mm)	Lóp kim loại hót đi ở một lần chuyẻ̉n dao (mm)	Đô chính xác gia công (mm)	Độ nhẵn bóng bể mặt
Gioa thô	Giūa phá	0,5-1	0,05-0,1	0,1-0,2	Rz320-Rz80
Giua tinh	Giũa tinh	0,15-0,30	0,02-0,06	0,02-0,05	Rz40-Ra2,5
Giüa mịn	Giual mịn	0,05-0,1	0,01-0,05	0,005-0,01	Ra<1,25

Các loại giũa nhỏ thường gọi là giũa mỹ nghẹ (hình 4.3) được làm từ day tròn đường kính $2 ; 2,5$ và $3,5 \mathrm{~mm}$ bằng thép cacbon dung cu Y10, Y12. Gida mỹ nghệ có tớng chiêu dài $120,160 \mathrm{~mm}$, chiếu dài phấn cắt 40,60 và 80 mm cơn lại là phấn chuôi để câm tay. Các loại giûa mỹ nghệ dùng đế giûa các lỡ. rãnh, các bé mặt nhỏ, chính xác.

Hình 4.3. Giũa mỹ nghẹ̉ và biên dạng của giūa

Giũa mỹ nghệ chia thành 6 cỡ số tuỳ theo só vân giũa trên 10 mm chiều dài làm việc. Só 1 có 22 đường vân, còn số 6 có 80 đường vân. Như vậy giuna số 1 là giũa thô, só́ 2 là giũa mịn, số $3,4,5,6$ là loại giũa rất mịn. Giũa mỹ nghệ có nhiều biên dạng khác nhau: tròn, vuông, tam giác, ôvan...

Ngoài ra khi cần gia công nguợi bề mặt có độ cứng cao có thể dùng giũa mỹ nghệ gấn kim cương. Bảng 4.3 giới thiệu hình dạng và kích thước các loại giũa mỹ nghệ có gắn kim cương nhân tạo dùng đế sữa nguội các bộ khuôn có gắn mảnh hợp kim cứng.

Bảng 4.3. Hình dạng và kích thước các loại giũa my̆ nghệ gắn kim cương

Bán nguyệt: - tù - nhọn		$\begin{aligned} & b=2,5 \cdot 4 \\ & h=1-2 \\ & b=4 \cdot 5 \\ & h=2 \cdot-2,5 \end{aligned}$
O van: - tù - nhọn		$\begin{aligned} & b=2,5-6 \\ & h=1-3 \\ & b=3 \cdot 5 \\ & h=1-2 \end{aligned}$
Tam giác: - tù - nhọn		$\begin{aligned} & b=4-6 \\ & b=3-5 \end{aligned}$
Thoi: - tù - nhon		$\begin{aligned} & b=3,5-5 \\ & h=2-3 \\ & b=3,5-4,5 \\ & h=1,5-2 \end{aligned}$

Để nâng cao thời gian sử dụng của giũa, khi sử dụng cần chú ý không nên dùng giũa để gia công các phôi đúc có vỏ cứng, dính cát; phôi rèn có gờ, vảy gỉ kim loại vì sê làm giūa mòn nhanh. Không được để giūa dính dầu, bụi bẩn đặc biệt là hạt mài vì làm giảm khả năng cắt gọt của giũa. Giũa được bảo quản tránh để nước rơi xuống làm giũa bị gỉ.

Trong quá trình làm việc, khi mạt phoi bám đây khe giũa làm giảm khả nảng cất gọt của giũa, khi đó dưng bàn chải sát chài sạch mạt phoi, vết bản, gì.

4.3. KȲ THUẬT GIŨA

Chát lương bé mạt sau khi giãa phu thuọc vào tư thé dứng của người cơng nhan, cách cám giãa và thao tác khi giüa. Khi giũa, chi tiết dược kẹp tren cto, chiéu cao eto cán chọn đé vị trí của tay khi làm viẹc tạo thành góc vuoung $\left(90^{\circ}\right)$ so vơi cánh tay kể tù vai (hinh 4.4 a).Than của ngưdi tho tạo thành góc 45° so voí cạnh của má eto (hình 4.4 b).

Hinh 4.4. Tư théc của người thọ khi giùa
a) Vị tri của người thọ khi đứng,
b) Vị trí khi nhin từ trên xuống,
c) Vị trí của chân khi đứng.

Bàn chân trái đặt cách cạnh của bàn nguội một khoảng $150-200 \mathrm{~mm}$, góc bàn chân hướng về bàn nguọị khoảng 30°, chân phải tạo góc 75°, (hình 4.4 c) mặ hướng về hướng chuyển động của giũa khi thao tác. Tay phải người thợ nắm cán giũa, ngón cái đạt trển cán dọc theo chiều dài của giũa; tay trái tỳ nhẹ trên mặt giũa, khi đẩy giû̉a, lực tỳ khi đẩy phải đều.

Khi giũa nguội bề mặt thường có các dạng sau:

- Giũa mặt phẳng (rộng hoạac hẹp).
- Giũa các mặt phẳng hợp thành một góc.
- Giūa các chi tiết hình trụ.
- Giũa các bề mặt cong (lồi, lôm).
- Giũa các chi tiết mỏng.

Giīa các mặt phả̛ng: thường dùng các loại giũa dẹt phả̉ng vân chéo (tho và tinh). Trước khi giưa cần vạch dáu các bé mặt, xác định vị trí tương quan của các bê mặt theo bản vẽ chi tiết dể bảo dảm lượng dư khi giũa, tránh phé phẩm. Sau đó kẹp chạt chi tiết trên êto ở vị tri nẳm ngang, bế mạt cân giưa cao hơn má etơ 4-7 mm rới tiến hành giưa mặt phẩng dấu tiên. Kiểm tra đọ song song khi giũa bà̀ng com pa đong hoặc thước cặp. Để kiếm tra độ phả̉ng của bé mậ thương dùng thước kiểm đạt ở các vị trí khác nhau (dope, ngang, chéo) trên mặt phẳng và đánh giá đô phẩng bầng khe sáng giữa thước kiếm và mặt phẳng gia công.

Giila các mặt phả̛ng ha̛p thành mọt góc: Khi giũa đé tạo thành góc vuông bên trong thường gạ̣p nhiều khó khăn hơn. Khi giũa các mặt phả̉ng này thương dể cạnh ben giũa không có đường vân hướng vế phía cạnh trong của góc vuông (hình 4.5). Trước hết gia công mặt phả̉ng rộng A, B bằng giũa thố và giũa mịn, sau đó giūa các mặt trong. C, D và giuna mặt đầu thước góc theo chiều caoo yêu cầu. Cuối cùng dùng giũa mịn gia công lần cuối các bề mặt, loại bỏ các cạnh sắc, gờ, bavia trên bề mặt.

Giina các bề mặt trụ: Các bề

Hình 4.5. Giūa góc vuông của thước góc mật trụ (trục) kích thước nhỏ có thể giữa nguội như sau (hình 4.6): trước hết giũa theo cạnh có đường kính lớn nhất ở cả hai phía, sau đó giũa các góc tạo thành bể mặt đa cạnh (tiết

Hính 4.6. Giūa bế mặt trụ trén khới vuơng diện có 8 cạnh), từ bề mặt này, giũa tiếp các góc tạo thành bề mặt 16 cạnh, sau dó sửa để tạo thành mặt trụ có đường kính yêu cầu. Lớp kim loại lơn nhất khi chuyển từ 4 sang 8 cạnh thường dùng giũa thô để bảo đảm năng suất; khi đã chuyển sang nhiều cạnh (8 cạnh) dùng giũa tinh để sửa đúng.

Kiểm tra độ tròn bằng com pa hoạac thước cặp ở nhiè̀u vị trí khác nhau.
Giĩa các bề mặt cong (lơi hoặc lōm): Bề mặt trước khi giũa cần được tạo hình sơ bộ bằng cưa, cất, khoan, đục... để giảm bớt lượng dư khi giũa. Khi giũa đường cong lôi, phôi tạo ra có dạng hình tháp, gần đúng biên dang gia công (hình 4.7 a). Sau đó dùng giũa phá để giũa thô và chừa lượng dư khoảng 0,8-1 mm để giũa tinh chính xác theo dường dấu (hình 4.7 b).

Khi giũa các đường cong lōm (hình 4.8), sau khi tạo

b)

Hình 4.7. Giūa bế mặt cung lồi
a) Cưa, cắt sơ bộ; b) Sửa nguội bằng giūa dẹt. hình sơ bộ bằng cưa, cắt tạo góc (hình 4.8 a), dùng giưa dẹt hoạ̣c giũa vuông giũa phá, rồi dùng giũa tròn thô có bán kính nhỏ hơn bán kính cung lõm của chi tiết để giũa theo đường dấu, chừa lượng dư $0,3-0,5 \mathrm{~mm}$ cho giũa tinh. Kiểm tra bề mặt cung bằng khe sáng giữa dưỡng kiểm và bề mặt cần kiểm.

Độ vuông góc giữa bề mặt gia công với mặt đầu được kiểm tra bằng thước góc đo ở một só vị trí khác nhau.

Hinh 4.8. Giũa bề mạt cung löm
a) Gia cóng so bộ; b) Sửa nguội bằng giũa tròn.

Giüa các chi tiết mỏng: Cách giũa tương tự như khi giŭa chi tiét thành dày, tuy nhién chi tiết mỏng khó gá đặt khi thao tác, do đó khi kẹp chặt để giũa thường gá chi tiết mỏng vào khe rãnh của các tấm gổ (hình 4.9)

Hình 4.9. Giūa các chi tiết thành mỏng

Síra nguọi lần cuôí bề mặt: Sau khi giũa tạo hình kích thước, với bề mặt yêu cầu độ

Hình 4.10. Sửa nguội tinh bể mặt
a) Giưa tinh bế mặt; b) Làm nhẵn bề mặt bằng giấy ráp. nhã̃n cao, khi áy phải sửa nguội tinh bề mặt bằng giũa mịn, giấy ráp, thanh đá mài...

Sửa nguội tinh bằng giũa mịn (hình 4.10 a) là dùng giũa mịn đẩy nhẹ trên bề mạ́t gia công theo hướng dọc và hướng ngang để các vết giũa dan nhau tạo ra bề mặt nhả̉n bóng.

Ngoài ra còn dùng giấy ráp cuốn ngoài thân giũa dể sửa nguội tinh bề mặt (hình 4.10 b).

4.4. GIŨA CÁC LỖ Đ!̣̂NH HìNH VÀ RÀ KHỚP CÁC BẾ MẶ

Giũa các lô định hình là gia công các lổ có hình dáng khác nhau: lô tam giác, lỗ vuông, lổ hình chữ nhạt... Khi gia công lố tròn, lổ ôvan dùng dụng cụ là giũa tròn, giưa lòng máng: các lठ̄ hình tam giác dùng giũa tam giác, hình lưỡi dao, hình lá lúa; các lơ vuông, chữ nhạt, dùng giũa vuông, giũa dẹt.

Sau day la mọt só trương hợp gla cong:
 vuong thường tháy trên tay quay taro, tay quay khi doa tay... (hinh 4.11 a). Trước khi gia công phải láy dấu lô và khoan lô đê chừa lượng dư $0,5 \mathrm{~mm}$ mối bên cho gia công nguội, sau dó giũa phá bốn góc của lố theo dấu, để chừa lượng dư $0,5-0,7 \mathrm{~mm}$. Khi giûa tinh 1 है, trước hết giuna hai cannh 1 và 3 sao cho đưa dưỡng thử vào lố lọt sâu 2.3 mm , tồi mới giũa tiếp hai cạnh 2 và 4 . Bể mặt đạt yêu cầu sau khi dưa dưỡng thử vào lọt và trượt trong lổ nhẹ nhàng, không bị dơ, lắc, lệch.
b)

c)

Hinh 4.11. Gia công các lō đụnh hinh và rà khớp các bề mặt

> a) Giûa lỗ vuông; b) Giūa lỗ tam giác;
c) Gioua và rả khớp các bể mặt bán nguyệt; d) Gioua và rà khợ các bẻ̛ mặt rãnh mang cá

Giĩa lồ tam giác (hình 4.11 b) : Sau khi lấy dấu lổ tam giác và khoan lỗ, dùng giũa phá ba góc và giũa các cạnh $1,2,3$ để chừa lượng dư $0,5 \mathrm{~mm}$ so với đường vạch dâu. Khi giūa sửa dúng các cạnh, thường dùng dưỡng kiểm để kiểm tra các cạnh cho đến khi nào đưa dưỡng vào trong ló và trượt nhẹ nhàng. Dùng cân lá dê kiém tra khe hở gi̛̛a dưỡg va lờ (giá trị khe hở nhỏ hơn $0,05 \mathrm{~mm}$).

Ra khớp các bé mựt: là phương pháp sửa nguộ tinh lấn cuơi khi ghép hai bé mặ định hình vào nhau. Độ chinh xác sau khi sừa nguọ̣i được đánh giá bàng các dưỡng mău dạc biẹt.

Khi ngựi các bé mật chi tiét có tiết diẹn cung tròn, đâu tiên tiến hành gia công nguội bê mật có đường bao bên trong trước vi chúng dể kiểm tra bàng các trục kiểm. Thứ tự công việc tiến hành như sau: trước hết giũa mặt phả̉ng lớn để làm chuấn, sau đó vach dâu các đường vạch $1,2,3,4$ (hình 4.11 c) và cung tròn. Cưa, cắt các cạnh (đường chấm gạch), giũa nguọi chính xác cạnh 1 , cung tròn, kiểm tra đọ chính xác bằng dưỡng mảu, độ đới xứng bằng thước cạ̣p.

Khi gia công cung tròn bên ngoài, thứ tự gia công như sau: trước hết giũa nguội mặt phẩng lớn để làm chuẩn, gia công nguội bốn cạnh bên, lấy dáu và cắt các góc (theo đường chấm gạch), giũa nguội các cạnh 5,6 , sửa nguội tinh các bề mặt lắp ghép.

Độ chính xác lắp ghép được thể hiện qua độ kín khít khi lắp và kiểm tra bằng khe sáng.

Hình 4.11 d trình bày cách nguội các bề mặt lắp ghép kiểu mang cá. Trước hê̂t gia cong mang cá ngoài theo thứ tự: gia công nguội mạat phẩng lớn để làm chuẩn và bốn cạnh ngoài, lấy dấu các góc, cắt tạo hình sơ bộ và gia công nguội các cạnh 5,6 song song với cạnh 1 , giũa nguội các cạnh 7,8 tạo góc 60° so với cạnh 3 , bảo đảm đói xứng so với tâm chi tiết.

Gia công rãnh mang cá bên trong theo thứ tự: gia công nguội mặt phẩng lớn, lấy dấu rãnh mang cá và cắt tạo hình sơ bộ, gia công nguội các cạnh 5 , 6,7 , để chừa lượng dư $0,05-0,1 \mathrm{~mm}$, bảo đảm góc độ, độ đối xứng. Cuối cùng tiến hành sửa nguội tinh sao cho khi lắp ghép mang cá trượt nhẹ, không lắc, lệch, không có khe hở sáng.

Sai sót phế phẩm khi giina:

Trong khi giũa do nhiều nguyên nhân khác nhau gây ra sai sót, phế phảm như: kích thước gia công, độ nhám bể mặt không dạt yêu cầu, bề mạat gia cống không bằng phẳng, bề mặt có vị trí tương quan không phù hợp sọ với các bề mặt khác, các bề mạat gia công rà khớp nhau khi lắp bị lắc, lệch...

Để ngăn ngư̛a những sai sót phế phẩm kể trên cần phải tìm rõ nguyên nhân sinh ra để loại trừ, phải tổ chức tốt chồ làm việc, phong cách làm việc
của người thợ cần chịu khó, kiên nhā̃n, tay nghề thành thạo. Khi gia công tinh phải thao tác cẩn thận, cần phải có những dụng cụ gia công, dưỡng mẩu thích hợp.

Câu hỏi

1. Giũa thường được sử dụng khi nào?
2. Các loại giūa và phạm vi sử dụng của từng loai?
3. Các dạng vân giũa và phạm vi sử dụng của từng loại?
4. Cách cầm giuna và tư thế của người thợ khi thao tác?
5. Trình tự công việc khi giũa mặt phả̉ng và cách kiểm tra sau khi giũa?
6. Cách giũa các bề mạat tạo thành góc vuông, bề mặt trụ, bể mặt cong?
7. Trình tự công việc khi giũa nguội các lổ vuông?
8. Trình tự công việc khi giũa nguội các lổ tam giác?
9. Rà khớp bề mặt là gì? Phân tích trình tự khi rà khớp bề mặt lắp ghép kiểu mang cá, cung tròn ?

Chương 5

NÁN, UỐN, GẤP KIM LOẠI

5.1. NẮN KIM LOAI

1. Khái niệm

Nguyên công nguội dùng để zắn thẳng, sửa các phôi liệu, chi tiết bị uốn, cong vênh gọi là nắn thẳng.

Nấn thẳng thường dùng để nắn các phối tấm sau khi cắt hoạ̣c bị cong trong quá trình làm việc, phôi hàn, chi tiết sau nhiệt luyện bị cong vênh; nấn thẳng chỉ dùng nắn các chi tiết có tính dẻo (thép, đồng...), không dùng để nắn các chi tiết từ vật liệu giòn.

Nắn thằng dược thực hiện theo hai phương pháp: Nắn bằng tay, dùng búa nắn chi tiết trên đe hoặc trên đế gang và nắn bằng máy dùng trục lô để nắn, nắn trên máy ép và các đồ gá khác.

Nấn bằng tay sử dụng bứa nắn đầu tròn (không dùng búa đầu vuông). Búa phải được tra cán chắc chắn, đẩu búa phải phả̉ng, nhẵn.

Khi nắn các bãng, dải kim loại mỏng có thể dùng bàn phẳng bằng gố hoạ̣c bằng kim loại để là phẳng.

Nắn bằng máy thường sử dụng mấy nắn chuyên dùng có các trục lô để nắn, khi đưa chi tiết qua giữa các trục nắn đang quay, chi tiết sê được nắn thả̉ng. Nấn trên máy ép, phoi được đỡ trên hai gới đỡ, khi máy ép đi xuớng sẽ nắn thẳng các chi tiét cong vênh.

Nấn thẳng có thể nắn nguội hoạ̣c nắn có gia nhiệt, khi nắn có gia nhiẹt, chi tiêt được nung nơng trước khi nấn, nhiẹt đọ nung trong khoảng $800-$ 1000° (cho thép CT3), $350-470^{\circ}$ (cho hợp kim nhơm). Viẹc chọn cách nấn tuỳ thuốc vào đô cong vênh, kich thước sản phả̉m, đạc tính của phôi liệu.

2. Dụng cụ và gá láp sử dụng khi nán thảng

- Bàn ná̛n (hình 5.1): Bàn nắn được chế tạo từ gang xám, bàn nắn có kích thước $1,5 \times 5 \mathrm{~m}, 2 \times 2 \mathrm{~m}, 1,5 \times 3 \mathrm{~m}$, và $2 \times 4 \mathrm{~m}$, bề mặt bàn phả̉ng, nhăn. Bàn phải nặng, chắc, bền, bàn được gá nằm ngang, kê trên đế kim loại hoặc gở để có thể dùng búa nắn mà không bị rung, lác.
- Bía nắn đầu tròn: búa nắn là búa khi gõ trên chi tiết để nắn không để lại vết khuyết, lôm trên bề mặt chi tiết. Khi nắn các bề mạat dả qua gia công tinh, các chi tiết làm từ kim loại màu thường dùng búa nắn bằng kim loại mềm (đồng, chì, gỗ...).
- Bàn phảng dùng để nắn phẳng các tấm, dải kim loại mỏng.

Hình 5.1. Nắn thẳng trén bàn nắn
a) Nắn vật liệu thanh tròn: 1-bàn nắn; 2- chi tiết cần nắn
b) Nắn tấm kim loại

3. Kỹ thuật nán thẳng

Chi tiết cong vênh có thể kiển tra bằng mắt hoặc đặt chi tiết lên bàn phả̉ng để đánh giá mức độ cong vênh qua khe hở giưa chi tiết và mặt bàn. Dùng phấn đánh dấu những chổ cong vênh trên chi tiết.

Khi nắn thẳng cần xác định chỗ nào trên chi tiết cẩn dùng búa gõ, búa gō phải chính xác, đúng vị trí, đều trên chiều dài đường cong và giảm dần từ chổ cong lớn nhất đến chổ cong nhỏ nhất. Chi tiết sau khi nắn được kiểm tra độ thẳng bằng thước kiểm, bàn phẳng.

Nắn thẳng tầm kim loại: Công việc được thực hiện theo thứ tự sau: dùng phấn đánh dáu chổ cong vênh, đặt chi tiết lển đe hoạ̉c bàn nắn, hướng chỗ cong lên trên, tay trái giữ một đầu chi tiết, tay phải dùng búa đánh vào chổ lồi trên chi tiế. Chi tiết càng dày, độ cong vênh càng nhiều, lực đánh của búa càng lớn và giảm dần khi độ cong của chi tiết giảm.

Khi nắn các dải, băng kim loại có thể lật lên lật xuống các mặt để nắn. Độ thẳng sau khi nắn được kiểm tra bằng mắt, chính xác hơn thì dùng bàn lấy dấu phẳng để kiểm tra khe sáng hoặc đặt thước kiểm lên bề mặt chi tiêt.

Những sai sót, phế phả̉m thường thấy khi nắn thẳng là do xác định vị trí để đánh búa không chính xác, lực đánh búa không đều, đánh búa không đúng vị trí, để lại nhiều vết lõm, xây sát trên bề mặt chi tiết.

Nắn tấm kim loại mơng: Trước khi nắn cần tiến hành kiểm tra và đánh dấu độ cong vênh. Sau đó đặt chi tiết lên bàn nắn, tay trái giữchi tiết, tay phải dùng búa đảnh từ cạnh bên đến chố lồi cao. Lực đánh búa giảm dẩn khi độ cong vênh giảm (hình 5.1 b).

Nắn các tấm kim loại mỏng hơn, có thể dùng búa gổ (vồ) dể nắn
(hình 5.2 a), với các lá kim loại rất mỏng, còn dùng bàn phẳng để là, vuốt phẳng (hình 5.2 b).

Nắn phôi cán tròn, ngắn: Phôi các loại trục thường được nắn theo hai cách: nắn bằng búa tay trên bàn nắn, ngắm độ thẳng bằng mắt hoạac nắn trên máy ép, phôi dược gá trên hai khối V , phần cong lồi hướng lên trên và dùng máy ép xuống.

Nắn chi tiết saut khi tôi: sau khi tôi, chi tiết dễ bị cong vênh do thay đổi nhiệt độ độr ngột (khi nung và nhúng chi tiết vào nước hoặc dẩu). Tuỳ theo tìng loại chi tiết để chọn biện pháp nắn

a)

b)

Hinh 5.2. Nắn tấm kim loại mỏng
a) Dùng búa gồ; b) Dùng bàn phẩng. thẳng sau khi tôi: với chi tiết chính xác, không dược để lại vết sau khi nắn, lúc đó phải dùng các loại búa nắn từ vật liệu mềm (đồng, chì...). Với chi tiết dễ bị kéo giãn,

Hinh 5.3. Nắn tấm kim loại sau khi tôi 2-3-1: Thứ tự thao tác búa. nên dùng búa nặng $200-600 \mathrm{~g}$, đầu búa được tôi hoặc dùng búa nắn đầu vát (hình 5.3).

Các chi tiếl có chiều dày lớn hơn 5 mm , nếu chỉ tôi lớp bề mặt, khi đó chỉ lớp kim loại chiều sâu $1-2 \mathrm{~mm}$ có độ cứng cao, còn trong lōi vẫn dẻo, có thể dùng búa nắn như cách nắn thông thường.

Các chi tiết mỏng ($<5 \mathrm{~mm}$) thường được tôi thể tích toàn bộ chi tiết, khi đó không dùng búa gõ vào chỗ lồi lên mà ngược lại gõ vào chổ.lõm, kết quả là các thớ kim loại chô̂ lõm bị kéo căng ra theo tác dụng của búa, còn thớ kim loại chổ lồi nén lại làm chi tiết trở lại thẳng.

Hình 5.4 trình bày cách nắn thước góc, nếu sau khi tôi, góc nhỏ hơn 90°, khi đó búa cần tác dụng vào đỉnh của góc bên trong (hình 5.4 a); nếu góc lớn hơn 90°, búa cần tác dụng vào đỉnh phía bên ngoài (hình 5.4 b), nhờ đó sẽ kéo thước góc dần trở về góc đúng $\left(90^{\circ}\right)$.

Hình 5.4. Nắn thước góc
a) Khi góc nhỏ hon 90°; b) Khi góc lớn hơn 90°.

Trong trường hợp tấm chi tiết sau nhiệt luyện bị cong vênh theo cả mặt phả̉ng và mặt bên, khi đó trước hết nắn theo mặt phẳng trước rồi sau đó mới nắn mặt bên.

5.2. UỚN, GǺP KIM LOAB

Uốn, gấp là công viẹc nguọi được sử dụng để uốn kim loai dưới dạng tấm, tròn hoạc dịnh hình tạo thành góc xác định, thành vòng, chữ U...

Khi uớn, gâp công việc quan trọng đâuu tiên là xác định chiču dài phơi trước khi uớn đế sau khi uơn, gâp tạo thành sản phấm theo đúng yêu cấu. Thơng thường chiêu dài phơi là chiếu dài các doạn thẩng và chiéu dài cung lượn khi uơn.

Vt du:

+ Khi gấp tấm kim loại thành hình thước thọ, chiêu dài các đoạn thẳng là chiếu dài hai cạnh thước thợ, còn đoạn chiếu dài chở uớn thường lấy 0,6 0,8 chiều dày tấm.
+ Khi uốn kim loại thành vòng với dường kính ngoài 100 mm , chiều dài tấm kim loại khi khai triển được xác định là $\mathrm{L}=\pi \times \mathrm{d}=3,14 \times 100=314 \mathrm{~mm}$.

Gấp góc vuông kép: chi tiết trước khi đưa vào gấp được cắt, giũa nguội theo kích thước trên bản vẽ. Kẹp chi tiết l vào êtô (hình 5.5), giữa hai miếng thép góc 3 và gấp một đầu góc vuông, sau đó thay một miếng thép góc bằng miếng đệm 4 dể gấp góc vuông kia.

Hinh 5.5. Gấp góc vuông kép trên êtô
1-Chí tiết gia công; 2-Êtô; 3-Thép góc; 4-Miếng đệm.

Uốn trong đồ gá: Hình 5.6 là đồ gá uốn vòng của khớp bản lề. Trên miếng thép hình hộp 1 , khoan lổ 2 bằng đường kính ngoài của vòng bản lề, sau đó cất rãnh 3 theo chiều rộng của tấm vật liệu làm bản lề.

Đưa phôi liệu vào rãnh, dùng búa gõ hoạc ép bằng má êtô, kim loại sẽ dược uốn tạo thành vòng bản lề.

Hinh 5.6. Uớn trong đồ gá

Câu hỏi

1. Nắn kim loại là gì? Nắn thường dùng khi nào?
2. Các phương pháp nắn thẳng kim loại?
3. Dụng cụ sử dụng khi nắn kim loại?
4. Trình tự thao tác khi nắn thả̉ng kim loại dạng tấm, lá?
5. Nắn thẳng tấm kim loại sau khi tôi bằng cách nào?
6. Uốn gấp kim loại được sử dụng khi nào?
7. Trình tự khi gấp góc vuông kêp?

Chương 6

CUA, CÁT KIM LOẠI

6.1. DỤNG CỤ CUA, CÁT KIM LOẠI

Dựng cụ để cắt kim loại tuỳ thuộc vạ̀ hình dạng, kích thước chi tiết và phôi liệu. Khi cắt các dầy nhỏ dùng kìm cắt, khi cắt kim loại dạng tấm mỏng dùng kéo cắt tay hoạac kéo để bàn, khi cất tấm kim loại dày hơn hoặc phôi tròn dùng cưa tay, kim loại có tiết diện lớn dùng máy cưa, máy cắt, khi cắt ống dùng dao cắt ống...

- Kìm cắt: (hình 6.1) là dụng cụ dùng để cắt các dây thép mềm đường kính đến 5 mm , cắt đinh tán... Kìm cắt gồm hai mỏ tôi cúng được chế tạo từ thép cacbon dụng cụ Y7 hoạc Y8.

Kích thước kìm đã được tiêu chuẩn hoá, chiều

Hình 6.1. Kìm cắt rộng của mó cắt là 26,30 , 36 và 40 mm ; chiều dài toàn bộ của kìm uyỳ theo chiều rộng của mỏ cắt là $125,150,175$ và 200 mm .

- Kéo cắt: Là dụng cụ dùng để cắt kim loại dạng tấm gồm kéo cắt tay và kéo để bàn.
+ Kéo cắt tay (hình 6.2 a) là dụng cụ dùng để cắt tấm kim loại có chiều dày đến $0,5 \mathrm{~mm}$, được chế tạo từ thép Y7 hoặc Y8, bề mặt lưỡi cắt được tôi cứng, mài sắc tạo góc cắt.

Kéo có chiều dài $200-350 \mathrm{~mm}$, chiều dà̀ phần cắt $70,90,105 \mathrm{~mm}$. Khi cất, tẩm kim loại dược đặt giữa hai lưỡi kéo, tay trái giữ phôi, tay phải tạo lực án luỡi kéo xuống để cắt (hình 6.2 b).

Hình 6.2 c giới thiệu cách cắt vành tròn tấm kim loại đùng kćo cắt tay: hình bên trái: chiều cắl khộng đúng và chiều cắt đúng.

+ Kéo dể bàn (hình 6.3 a) có kích thước lớn hơn kéo cắt tay thường dùng để cát tấm kim loại có chiều dày đến 3 mm . Một trong các lưỡi kéo được rèn gấp tạo thành một cạnh góc vuông và cắm cố định xuống bàn. Kéo để bàn có năng suất cất không cao, tốn sức lao động, nhất là khi cắt phôi có chiều dài lớn. Khi đó nên thay kéo để bàn bằng máy cắt dùng hai dao cắt dạng đĩa tròn.

Hình 6.2. Kèo cát kim loại
a) Kéo cắt tay; b) Cắt kim loại bằng kéo trái và phải; c) Cắt vành tròn bằng kėo cắt tay

- Kéo cắt kiểu đờn bẩy (hình 6.3 b) dùng để cắt tấm kim loại có chiều dày $1,5-2,5 \mathrm{~mm}$, độ bền $40-50 \mathrm{kG} / \mathrm{mm}^{2}$ (thép, đuya ra), có chiều dài không hạn chế.

Hình 6.3. Kéo cắt
a) Kéo cắt đẻ̉ bàn; b) Kèo cắt kiẻ̉ đòn bẩy:

1- Lươi kéo dưới; 2-Tấm kẹp; 3-Bản gá; 4- Lươi kėo trên; 5- Bỏn quay; 6- Đới trọng; 7-Cữ tỳ.

Kéo gồm hai lưỡi cắt, lưỡi kéo trên dược gắn trên đòn 4 , có thể quay lên xuống nhờ tay đòn 5 , cân bằng nhờ đối trọng 6 . Lưỡi kéo dưới 1 được gắn cố định lên bàn.

Khi cắt, đưa tầm kim loại vào, đặt trên bàn 3 , đẩy cho chạm cữ tỳ 7 , cữ 7 dùng để điều chỉnh chiều rộng dải kim loại cần cắt, kẹp phôi nhờ tấm 2 và dùng tay đòn 5 ấn lưỡi cắt trên xuống cắt kim loại.

- Clta kim loại là nguyên công nguội dùng cắt các tấm kim loại dày, phôi kim loại dạng tròn, định hình.

Hình 6.4. Cưa kim loại
a) Khung cuáa có̀ định:

1- Lười cưa; 2- Đầu nối; 3-Chốt nói; 4-Đai ớc; 5-Khung; 6-Tay nắm;
b) Khung cưa điểu chỉnh ; c) Lưở cưa; d) Răng Iữō cưa.

Hình 6.4 a là một cưa tay bao gồm khung 5, tay cầm 6, lưỡi cưa 1 đượ kẹp chặt nhờ hai đâu nối xẻ rãnh 2 có lổ khoan để cắm chốt 3 vào lổ trên lưỡ cưa. Khi quay dai ốc 4 sẽ kéo căng đầu nối 2 và kẹp chặt lưỡi cưa trên khung

Lưỡi cưa tay kim loại thường có chiều dày mỏng, được chế tạo từ thé cacbon dụng cụ Y8, Y9, Y10, trên bề mặt có tạo ra răng cắt một bên lưỡi cư: hoặc cả hai bên đối diện (hình 6.4 d).

Khi cưa, các rāng lưỡi cưa được bố trí để mở mạch cưa, tránh ma sát nhiệt khi cắt làm gāy, non lưỡi cắt. Lưỡi cưa có răng (bước) lớn thường me mạch bằng cách bố trí một lưỡi cắt nghiêng sang phải, lưỡi cắt tiếp the nghiêng sang trái... Lưỡi cưa có rāng nhỏ mở mạch theo kiểu hình sóng: 2-1
lưỡi cắt nghiêng sang trái, 2-3 lưỡi cắt tiếp theo nghiêng sang phải. Lưỡi cưa có răng trung bình mở mạch theo kiêu: một rāng sang trái, một răng sang phải còn răng thứ ba không nghièng.

Lưỡi cưa (hình 6.4 c) dược đânh sớ trên thân lưỡi cưa (ở phần không làm việc) các thông sớ như chiều dài lưỡi cưa (300), bề rợng lưỡi cưa (0,8), bước lưỡi cưa $(1,5)$, vật liệu làm lưỡi cưa (Y8).

Kích thước lưỡi cưa xác định bằng khoảng cách giưa hai lỡ trên than lưỡi cưa. Lưỡi cưa lớn nhất có chiểu dài $250-300 \mathrm{~mm}$, chiều rộng $12-15 \mathrm{~mm}$ và chiĉ́u dày $0,6-0,8 \mathrm{~mm}$. Lưỡi cưa cả hai mặt (trên và dưới) đểu có lưỡi cát thường có chiếu rợng lớn hơn.

Khi lấp lưỡi cưa vào khung cấn chú y hương nghiéng của lươii cát cho phù hợp với chiếu đả̉y của khung cưa vể phía trước khi cưa (hình 6.4 c).

Só răng cắt của lưỡi cưa khi chế tạo được chọn tuỳ theo độ cứng của vật liệu gia công, hình dạng, kích thước vật cần cưa. Khi cắt vạt liệu cứng (thép, gang) chọn lưỡi cưa có số răng $16-18$ răng trên chiểu dài 25 mm , khi cát các tấm mỏng: 24-32 răng, khi cắt các vật liệu kim loại dạng thanh: 22-24 răng. Khi chọn cấn theo nguyên tắc: chi tiết cần cất càng dày, răng càng lớn và ngược lại, chi tiết càng mỏng, răng càng nhỏ.

Bảng 6.1 giới thiệu kích thước của các loại luỡi cưa, các góc của lưỡi cưa (γ : góc trước, : α góc sau) được chọn như sau: khi gia công hợp kim đồng nhơm $\gamma=12^{\circ}$ và $\alpha=35^{\circ}$; khi gia công thép và gang: $\gamma=0^{\circ}$ và $\alpha=30^{\circ}$.

Bảng 6.1. Các kích thước cơ bản của lưỡi cưa

Hinh dang lưỡi cưa	1	b	h	d
	Lưỡi cưa tay			
	250	13	0,65	6
	300	160 ,	8	7
	Lươi cưa máy			
	350	25	1,25	7
	400	32	1,6	7
	450	40	2	8
	600	50	2,5	10

Khung cưa được chế tạo có hai loại: cố dịnh (hình 6.4 a) và điều chính (hình 6.4 b) để có thể gá đặt được các lưỡi cưa có chiều dài khác nhau.

Khi cưa, cắt kim loại cần tuân theo các nguyên tắc sau:

1. Chọn lưỡi cưa theo vật cần cưa (độ cứng, hình dạng, kích thước...).
2. Kẹp chặt lưỡi cưa trên khung sao cho hướng lưỡi cắt theo hướng của hành trình làm việc khi cưa. Lưỡi cưa kẹp chặt vừa đủ, tránh xoắn, vặn.
3. Khi thao tác cẩn đẩy lưỡi cưa trển suốt chiều dài.
4. Khi cưa, không đẩy lưỡi cưa quá nhanh ($>30-60$ hành trình/phút), khi đó ma sát, nhiệt cắt lớn làm lưỡi cưa mau mòn. Khi đả̉y cưa phải nhẹ nhàng, đều, không giật, lắc.
5. Không đẩy cưa đi đến cuối lưỡi cưa, vì khi chạm vào đầu nối có thể nới lỏng Iưỡi cưa đã kẹp trên khung.
6. Khi cưa, cần bôi trơn lưỡi cưa bằng dầu khoáng, tránh để nhiệt cắt lớn làm lưỡi cưa bị non, giảm độ cứng.
7. Khi cưa vật liệu là đồng, đồng đỏ, phoi đồng bám vào lưỡi cưa làm lưỡi cưa không cất, chỉ trượt đi. Khi đó nên dùng lưới cưa mới và thường xuyên lau sạch phoi trên lưỡi cưa.

6.2. KỸ THUẬT CUA CẮT

Chi tiết cần cắt được kẹp chặt trên êtô nguội, khoảng cách giữa êtô và người thợ khoảng 200 mm . Khi thac tác, người thợ dứng thẳng, chếch một góc 45° so với đường tâm của êtô (hình 6.5), chân phải tạo với chân trái một góc $60-70^{\circ}$. Người thợ dùng cả hai tay giữ cưa, tay phải giữ chặt tay nắm của khung cưa trong lòng bàn tay (hình 6.6 a), tay trái đặt ở phẩn cuối của khung cưa (hình 6.6 c). Áp lực lưỡi cắt lên bề mặt cần cưa thực hiện bằng tay trái, còn tay phải thực hiện chuyển động đẩy lưỡi cưa đi lại đều.

Hinh 6.5. Tư thé đứng của ngươi thợ khi cưa a) Tư thé người thọ khi cưa; b) Vị trí chån người thợ.

a)

b)

Hinh 6.6. Năm giừ khung cua
a) Vị trí của tay khi chuả̉n bị cưa; b) Vị trí của tay phải; c) Vị trí của tay trái.

Quá trình cắt bao gồm hai hành trình: hành trình cắt khi lưỡ cưa đả̉y về phía trước và hành trình không cắt khi lưỡi cưa đẩy lùi về phía người thợ. Ở hành trình lùi về, không được ấn lưỡi cưa xuống bề mặt gia công vì làm luơơi cưa bị cùn, mòn, gãy lưỡi cắt ; ở hành trì̀nh cắt cần đả̉y lưỡi cưa đi đều, thẳng để miệng cắt được phẳng.

Cıta, cất tấm kim loại bản rộng: (hình 6.7) khi bắt đầu cưa, lưỡi cưa để nghiêng và cưa từ phía mép cạnh, sau đó giảm dần độ nghiêng và chuyển sang cắt phía mép cạnh đối điện, sau đó để lưởi cưa ở vị trí nằm ngang và cưa đến khi dạt yêu cầu.

Hînh 6.7. Cưa, căt tấm kim loại bản rộng

Khi cưa cắt kim loại theo chiều dọc, chiều sâu lớn (hình 6.8 a), khi đó lưỡi cưa được quay đi một góc 90° để khung cưa ở vị trí ngang.

Hinh 6.8.
a) Cưa theo chiều sấu; b) Cắt bằng cưa mỹ nghệ.

Cát các đường cong và góc thường dùng các loại cưa dây (cưa mỹ nghệ) (hình 6.8 b). Cưa dây là lữ̛i cưa mỏng có bản hẹp, răng cưa nhỏ. Ở chỗ chuyển tiếp (góc, hình) thường khoan một lổ bằng chiều rộng lưỡi cưa để xỏ lưỡi cưa qua khi thao tác cưa.

Cua, cắt ống: Ống trước khi cắt không kẹp trực tiếp vào êtô mà kẹp thông qua hai miếng gố để tránh biến dạng ống khi kẹp. Để cắt đúng chiều dài, trước khi cắt cần phải vạch dấu chiều dài cắt.

Cắt các ống bằng dao cắt ống: Dao cắt ớng (hình 6.9 a) bao gồm mỏ cắt 5 , tay cầm 3 và ba con lăn 2 (dao) bằng thép. dạng đĩa. Ống cần cắt được kẹp trong một gá lắp chuyên dùng 1 , dao cất được gá trên ống 4, khi quay tay cầm
đi lại xung quanh tâm ống và xiết dần tay quay 3 , dao cắt dạng con lăn 2 miết vào ớng và cắt đứt ống.

Hinh 6.9. Cát రng
a) Dựg cu cât ơng chuyên dùng:

1- Thân gá; 2-Dao dạng con lăn; 3- Tay cấm; 4-Phôi ớng; 5- Mỏ cât;
b) Etó kẹp ơng.

Ống cũng có thể được kẹp qua miếng đệm có rãnh khía gá trên êtô (hình 6.9 b). Khi cắt ớng, bề mặt tiếp xúc giữa dao cắt và ớng được tưới dung dịch èmunxi hoặc dầu.

Cưa, cắt kim loại trên máy cıáa: Cưa cắt kim loại bằng tay có năng suất thấp nên thường hay dùng máy để cưa cắt kim loại.

Máy cưa ngang (hình 6.10 a) là một loại máy công cụ bao gồm bệ máy 1 , bàn máy 2 , trên bàn có lắp êtô 3 dể kẹ̣ phôi cần cắt 6 . Trên máy có khung cưa 4 để kẹp lưỡi cưa máy 5 . Chuyển động đi lại, lên xuống của lưỡi cưa được thực hiện nhờ động cơ điện 8 thông qua các cơ cấu chấp hành. Trong quá trình cắt kim loại bề mặt tiếp xúc với lưỡi cưa được tưới dung dịch trơn nguội (dầu, êmunxi hoậc nước) qua đường ống 7 .

Máy cưa đî̉a (hình 6.10 b) dùng để cất ống và các vật liệu định hình. Máy cưa đĩa có nāng suất cao vì quá trình cắt liên tục, máy bao gồm lưỡi cưa đĩa 1 , trục mang đía cưa 2 , thân ngang 3 , bệ máy 6 , tay quay $4,5,7$ dể điều chỉnh vị trí khi cắt.

Khi cắt các loại thép hình (U, I, L, \ldots) thường hay dùng máy mài cắt, trên máy lắp đá mài dạng đỉa mỏng có đường kính $>300 \mathrm{~mm}$, chiều dày $2-2,5 \mathrm{~mm}$.

Hinh 6.10. Máy cưa
a) Máy cưa ngang:

1- Thán máy; 2- Bàn máy chứa dung dịch tron nguội; 3-Cơ cā́u kẹp phôi; 4- Khung cưa; 5-Lưöi cưa; 6- Phôi; 7-Vòi dung dịch tron nguội; b) Máy cưa đĩa:

1- Lữ̂i cưa đỉa; 2- Khung cưa; 3-Giá đơ; 4,5,7-Cơ cắu hām; 6- Bệ máy.
Khi cắt kim loại cần chú ý tuân thủ các nguyên tắc về an toàn lao động sau;

1. Lưỡi cưa được gá đặt chính xác và kẹp chặt cẩn thận trước khi làm việc.
2. Chi tiết trước khi cắt được kẹp chắc chắn trên êtô.
3. Không được dùng cưa không có tay nắm, không dược dùng miệng thổi mạt phoi vì có nguy cơ mạt phoi bắn vào mắt.
4. Trước khi cắt rời cần đỡ phần sẽ cắt, tránh để rợi gây tai nạn.

Câu hỏi

1. Các dụng cụ nguội dùng để cắt kim loại?
2. Cưa kim loại dùng khi nào? Dụng cụ dùng khi cưa?
3. Những nguyên tắc cần chú ý khi cưa cắt kim loại?
4. Tư thế của người công nhân khi cưa, cắt kim loại?
5. Các biện pháp khi cắt ống kim loại?
6. Các loại máy thường dùng để cưa cắt kim loại?
7. Các biện pháp an toàn lao động khi cưa cắt kim loại?

Chương 7

KHOAN, KHOÉT, DOA LỖ

7.1. KHOAN LỖ

1. Khái niệm

Khoan lô là phương pháp gia công lỗ trèn vật liệu đặc bằng dụng cụ là mūi khoan. Khơan lô thường dùng trong công việc nguội để khoan các lổ lắp bulông, vít để kẹp các chí tiết với nhau, khoan lố trước khi cắt ren lô (tarô), khoan các lổ dùng để đóng chốt định vị các chi tiết với nhau, khoan để cẳt đứt các tấm kim loại, khoan các vít gãy trong lổ dùng trong công việc sửa chữa...

Khoan rộng lỗ là khoan mở rộng lỗ có sẫn bā̀ng mũi khoan có đường kính lớn hơn. Chất lượng bề mạat và độ chính xác sau khi khoan đạt được thả́p, chỉ đạt cấp chính xác $12-13$, độ nhám bề mặt Rz80-Rz40 (trừ khoan nòng súng), để khoan đạt độ chính xác nhỏ hơn $0,1 \mathrm{~mm}$ đòi hỏi phải diều chỉnh máy cẩn thận, mũi khoan được mài chính xác và khi khoan phải dùng bạc dẫn hướng mūi khoan.

2. Dụng cu

Mũi khoan dùng cho công việc nguội thường là mũi khoan dẹt và mũi khoan ruột gà được ché́ tạo từ thép cacbon dụng cụ Y 10 , Y 12 hoặc bẳng thép gió P9 và Pl8.

Mûi khoan dẹt được chế tạo từ thép thanh tròn, một đầu đập (rèn) dẹt dạng mái chèo, lưỡi cắt phẳng, có hai cạnh cắt bố trí đối xứng qua tâm tạo thành góc đỉnh 2φ (hình 7.1).

Hình 7.1. Mūi khoan dẹt
a) Hai mặt căt; b) Một mặt căt.

Mũi khoan dẹt có hai loại: hai mặt cắt để gia công ở cả hai phía (hình 7.1 a) và một mặt cắt (hình 7.1 b). Góc đỉnh của mûi khoan một mặt khi gia công thép là $75-90^{\circ}$, khi gia công kim loại màu là $45-60^{\circ}$. Góc cắt của mūi khoan hai mặt là $120-135^{\circ}$.

Mũi khoan dẹt chế tạo đơn giản nhưng ít dùng vì năng suât và độ chính xác đạt được không cao, khi khoan các lở lớn khó thoát phoi, phoi quay cùng mũi khoan, cào xước bể mặt gia công, mũi khoan chóng mòn vì thế chỉ dùng khoan 1δ thô, 1 ở không sâu.

Mñi khoan ruột gà là mũi khoan thường được sử dụng, mũi khoan ruột gà bao gồm hai phần: phẩn công tác và phấn chuơí mũi khoan.

Hinh 7.2. Mūi khoan ruột gà
a) Chuôi trụ; b) Chuôi côn; c) Góc mài sắc mūi khoan.

Phần công tác của mũi khoan gồm có hai rãnh xoắn ruột gà, góc nâng 60° so với đường tâm để tạo nên luỡi cắt khi mài và để thoát phoi khi khoan. Đầu mũi khoan được mài vát góc để tạo nên hai lưỡi cắt chính của mũi khoan.

Phần chuôi mũi khoan có hai loại: chuôi trụ (hình 7.2 a) và chuôi côn (hình 7.2 b). Mũi khoan đường kính lớn, mô-men cất lớn thường có chuôi côn và lắp qua áo côn vào trục chính của máy khoan. Mũi khoan nhỏ thường có chuôi trụ lấp vào bầu kẹp của máy khoan bàn hoặc máy khoan cầm tay.

Mài sắc mũi khoan: mũi khoan được mài sắc trên đồ gá của máy mài dưng cụ hoạ̃c mài bằng tay trên máy mài hai đá. Góc đỉnh của mūi khoan (hình 7.2 c) khi mài chọn theo độ cứng của vật liệu gia công (bảng 7.1).

Bảng 7.1. Góc dỉnh mũi khoan cho theo vật liệu gia công

Vật liệu gia công	Góc dỉnh của mūi khoan
Thép, gang, đống thanh cứng	$116-118^{\circ}$
Đồng thau, đồng thanh	$130-140^{\circ}$
Đồng đỏ	$125-130^{\circ}$
Nhôm, bac-bit	140°
Phíp, xen-lu-lô	$85-90^{\circ}$
Đá	80°

Khi mài bằng tay (hình 7.3) dùng tay trái giữ vào phần công tác của mũi khoan gần phía lưỡi cắt, tay phải nắm vào phần chuôi, giữ chặt mũi khoan và cho tiếp xúc với bề mặt đá mài, dùng tay phải vừa từ từ quay mūi khoan vừa quay bổ xung thêm để dạt được mặt nghiêng của góc sau mũi khoan. Khi mài cần bảo đảm góc dỉnh và hai lưỡi cắt của mūi khoan đối xứng.

Hinh 7.3. Mài sắc mūi khoan
a) Mải trên máy mài hai đá; b) Kiểm tra góc đỉnh mūi khoan bằng dương;
c) Dụng cụ đo góc vạn năng:

1. Dĩa chia vạch; 2-Vạch chia; 3- Đīa quay; 4-Cữ; 5-Rānh; 6-Vít hãm; 7-Thước đứng;
d) Đo góc đỉnh mũi khoan bằng dụng cụ đo góc vạn năng;
đ) Đo góc của đục nhọn bằng dụng cụ đo vạn năng.

Sau khi mài sắc, mặt sau của hai lưỡi cắt mũi khoan tạo thành lưỡi cắt ngang. Góc nghiêng của lữ̛i cắt ngang là 50° với mũi khoan có dường kính đến 15 mm và 55° với mũi khoan có đường kính lớn hơn. Chiều dài lưỡi cắt ngang có liên quan tới độ bền và độ cứng vững của mūi khoan, mūi khoan có đường kính nhỏ hơn 10 mm , chiều dài lưỡi cắt ngang lấy bằng 0,25 đường kính mũi khoan; müi khoan có đường kính lớn hơn 10 mm , chiều dài lưỡi cắt ngang lấy bằng 0,15 dường kính mūi khoan.

Kiểm tra góc độ sau khi mài bằng dưỡng kiểm chuyên dùng (hình 7.3 b) Cạnh (a) của dưỡng để kiểm tra vị trí của lưỡi cất ngang, cạnh (b) để kiểm tra góc nghiêng của đường xoắn vít, cạnh (c) để kiểm tra góc đỉnh của mūi khoan và chieĉu dài lưỡi cắt.

Ngoài ra còn dùng dụng cụ đo góc vạn năng để do góc lưởi cất của dụng cụ (hình 7.3 c). Dụng cụ đo bao gồm đĩa chia 1 có vạch chia 2 chia ra từ $25^{\circ}-140^{\circ}$, thước đo 7 để đo chiê̂̀u dài lưỡi cắt của mũi khoan ruột gà, đĩa quay 3 , dường chuẩn 4 , rãnh 5 để quay điều chỉnh góc và cố định vị trí bằng vít 6 .

Dụng cụ đo góc vạn nāng còn dùng để do các góc khác, hình 7.3 d là vị trí của dụng cụ đo khi đo góc của mũi dục nhọn.

3. Dụng cụ phụ để kẹp mūi khoan

Bẩt kẹp (măng-ranh) dùng để kẹp mūi khoan, mūi khoét và mũi doa có chuôi trụ.

Bầu kẹp có nhiều loại kết cấu khác nhau, bầu kẹp (hình 7.4) gồm thân 1 , bên trong có hai vấu 2,3 có thể ra vào được. Trên các vấu có cả ren trái, ren phải tương ứng với ren một đầu trái, một đầu phải của vít-me 4. Khi quay vit-me 4 bằng chìa vặn 6 qua lổ vuông 5 sẽ mở hoạc khép lại lổ vuông giữa hai vấu để kẹp dụng cụ.

Hinh 7.4. Bả̉u kẹp hai vấu để kẹp mūi khoan

1. Thān; 2,3-Vắu; 4-Vít-me; 5-Lठ̃ vuông; 6-Chì vặn.

Hình 7.5 là loại bầu kẹp ba vấu dạng ống kẹp bao gồm chuôi 1 ăn khớp ren với bạc 2 , thân 5 bên trong có ren và lỗ côn. Khi dùng tay quay thân 5 (có khía nhám mặt ngoài) ăn khớp với ren ngoài của bạc 2 sẽ đẩy ba vấu của ống kẹp 4 theo côn đi vào, ép lò xo 3 lại để kẹp chặt mũi khoan.

Bầu kẹp có độ chính xác cao nhất là bầu kẹp có ba vấu dạ̣t nghiêng (hình 7.6). Bả̉u kẹp gồm vỏ 1 có khía nhám mặt ngoài ghép với đai ốc 2 , mạat trong của đai ốc là mặt côn có ren ăn khớp với ren ngoài của ba vấu đặt nghiêng. Khi quay vó 1 cùng dai óc 2 sẽ làm ba vấu 3 trượt trên mặt côn cùng đi vào hoạc mở ra để kẹp và tháo mũi khoan.

Hinh 7.5. Bầu kẹp ba vấu
dạng ống kẹp

1. Chuôi; 2- Bạc; 3-Lò Xo;

4- Vấu kẹp; 5- Thân.

Hinh 7.6. Bầu kẹp có ba vấu đặt nghiêng
1-Vỏ; 2- Đai ôc; 3-Vấu kep.

Hinh 7.7. Các loại áo côn
a) Ao côn và cách lắp ào côn:

1. Lỗ côn trong; 2- Côn ngoài; 3-Áo côn; 4-Rānh; 5,6-Vău.
b) Cách tháo mưi khoan trên trục chinh máy khoan:

7- Trục chính; 8-Chêm côn; 9-Rãnh; 10-Müi khoan.

Áo côn (hình 7.7 a) dùng để gá đặt các loại dụng cụ có chuôi côn (mũi khoan, khoét, doa...). Áo côn có mặt ngoài và lở là các bể mặt côn tiêu chuẩn (côn mooc hoặc côn mét), có rãnh 4 và vâu 5 . Thông thường lổ côn trên trục chính và côn chuôi dụng cụ có kích thước (số) khác nhau, khi ấy phải dùng áo côn có côn ngoài tương ứng (cùng số) với côn trục chính còn côn trong cùng số với côn chuồi mũi khoan. Khi lấp mũi khoan qua áo côn vào trục chính của máy sẽ bảo đảm định tâm chính xác cho mũi khoan và truyền được mô-men xoắn lớn khi cắt thông qua vấu. Khi tháo mũi khoan cũng rất nhanh bằng cách đưa chệm côn 8 vào trong rãnh 9 (hình 7.7 b), dùng búa gõ vào chêm sẽ tác dụng vào vấu 5 dể tháo müi khoon 10 ra.

Các bề mặt côn trong và ngoài của áo côn là các bề mặt côn tiêu chuẩn (côn mooc hoạc côn mét) và thường có các số $2-1$ (bên ngoài là côn số 2 , bên trong lô là côn só 1), $3-1,3-2,4-2,4-3,5-3,5-4,6-4,6-5$.

Khoan lổ thực hiện bà̀ng khoan tay, khoan điện cầm tay, khoan trên các máy công cụ (máy khoan, máy phay, máy tiện...).

Khoan cẩm tay (hình 7.8 a) dùng để khoan các lỗ đường kính dến 10 mm . Trên trục chính 1 có lắp một bánh rãng côn nhỏ (trên hình vê không thể hiện) ān khớp với bánh rāng côn lớn 2 , mũi khoan lắp vào bầu kẹp 6 . Khi khoan, tỳ vào tá́m đệm 4 giữ cho mũi khoan vuông góc với mặt gia công, tay trái nắm vào cần 5 ấn mūi khoan xuống bề mặt, tay phải quay tay quay 3 , qua cạp bánh rãng côn 2 truyền chuyển động quay cho mũi khoan.

Hình 7.8. Gá lắp khi khoan
a) Khoan cầm tay:

1-Trục chính; 2-Bánh răng côn lơn; 3-Tay quay; 4-Tám đệm; 5-Cần; 6-Bẩu kẹp.
b) Khoan dùng bánh cóc:

7- Trục chính; 8-Bánh cóc; 9- Dai óc; 10-Mül tâm; 11-Chạc; 12- Tay quay; 13-Cóc; 14-Thân; 15-Müi khoan.

Trong quá trình khoan phải luôn luốn kiểm tra độ chính xác vị trí của $10 \bar{\delta}$ khoan, khi lổ khoan thủng là khi mô-men cắt đạt lớn nhất. Do đó trước khi khoan thủng, quay và ấn mũi khoan vừa phải. Khi khoan lố trên tấm móng, nếu lực ấn lớn, mũi khoan rất dể bị kẹt và gãy đột ngột gây nguy hiểm cho người thợ do mất đà và làm hư hỏng chi tiết gia công.

Khoan tay düng bánh cóc: dùng để khoan các lô kích thước lớn có đường kính $20-40 \mathrm{~mm}$ hoặc khoan lô ở vị trí khó thao tác (hình 7.8 b) khi không có máy khoan điện.

Cơ cấu bao gồm trục chính 7, trên có lắp chạc 11, tay quay 12 . Đảu dưới trục chính có 10 côn để gá đặt mũi khoan 15 , đâu kia có răng vuông ăn khớp với đai ớc 9 , giữ định tâm bằng mũi tâm 10 . Vị trí của cụm gá được cơ định nhờ thân 14. Khi quay tay quay 12 , thông qua cóc 13 và bánh cóc 8 làm trục chính có lắp mũi khoan quay. Tay quay có hai động tác: quay đi khoảng $1 / 3$ $-1 / 4$ vòng để đẩy cho trục chính cùng với mũi khoan quay và cắt gọt, quay về (không cắt) để lùi cóc lại, ra khỏi ăn khớp với bánh cóc chuẩn bị cho lần quay đi tiếp theo; vị trí giữa bánh cóc và cóc được cố định nhờ lò xo. Mổi lần quay đi để cắt, tay quay lại đi xuống dưới một ít theo ăn khớp ren. Để giảm nhẹ sức lao động, tay quay phải để dài ($300-400 \mathrm{~mm}$), lượng tiến dao trên mối vòng quay khoảng $0,1 \mathrm{~mm}$.

Máy khoan diện cầm tay (hình 7.9 a) gồm động cơ điện lắp trong vỏ hợp kim nhôm 5 , trên trục chính 1 có côn hoặc bầu kẹp để lắp mŭi khoan 10. Trong quá trình khoan, dùng tay giữ tay nắm 3, đặt müi khoan vào đúng vị trí cần khoon (vị trí đã lấy dấu và núng tâm), sau đó ấn tấm đỡ 4 xuống, bấm nút diện 2 để mũi khoan quay.

Hinh 7.9. Máy khoan điện
a) Máy khoan điẹ̀n cả̀m tay:

1- Trục chính; 2-Cőng tấc điện; 3- Tay nắm; 4- Tấm đõ; 5-Vỏ máy;10-Mũi khoan;
b) Máy khoan điện có giá đđ̃:

6- Bàn máy; 7-Máy khoan điện cầm tay; 8- Tay đòn; 9-Trụ đõ;
c) Máy khoan bẳng tia lửa điện:
d) Sơ đồ gia công trẽn máy:

1- Biến trở; 2-Thùng chứa; 3- Biện cực dụng cụ; 4-Trục chính; 5-Giá đõ; 6-Ra le.

Máy khoan điện cầm tay chỉ dùng trong trường hợp khi không thể khoan được trên máy khoan cở định (máy khoan bàn, khoan đứng...) hoạc khi khoan lỗ trong quá trình lắp ráp mà không cần phải tháo chi tiết ra khỏi máy.

Máy khoan điện có giá đơ là máy khoan điện cầm tay 7 lắp trên trụ đỡ 9 (hình 7.9 b) để đầu khoan có thể quay đi các góc và có thể lên xuống khi khoan. Chi tiết được lắp trên bàn 6 , lực ấn đầu khoan vào chi tiết thực hiện nhờ tay đòn 8.

Khi khoan bằng máy khoan điện cầm tay cần chú ý các nguyên tấc sau:

1. Khi máy làm việc, phải chú ý cách điện cho người thợ bằng gāng, ủng hoặc thảm cao su. Động cơ điện phải nối mát.
2. Trước khi nối điện cho máy chạy, cần kiểm tra tình trạng của máy, dây dẫn điện, ổ cắm, mối nối...
3. Chỉ tháo mũi khoan khi máy đã dừng, chỉ dừng máy khi đã rút mũi khoan ra khỏi lỗ gia công.

Gia công lồ trên kim loại bảng tia lỉa diện: thường dùng khi chế tạo các chi tiết có hình dạng phức tạp, gia công nguội tớn kém nhiều thời gian và đòi hỏi người thợ phải có tay nghề caó. Ngoài ra khi gia công chi tiết bằng hợp kim cứng, các loại thép hợp kim, bền nhiệt, rất khó hoặc không thể gia công bằng dụng cụ thông thường.

Bản chất của phương pháp gia công bằng tia lửa điện là chi tiết và dụng cụ là hai điện cực khác dấu nối trong một mạch điện, khi cho chúng gần nhau, giữa hai điện cực phát sinh ra tia lửa điện, có nhiệt độ lớn, gây nóng chảy và phá huỷ kim loại ở vùng gia công tạo nên bề mặt gia công.

Máy gia công bằng tia lửa điện (hình 7.9 c) và (hình 7.9 d) là sơ đồ làm việc của máy. Máy gồm trục chính 4 , trên đó kẹp chặt điện cực dụng cụ 3 (bằng đồng). Trục chính không quay mà chỉ chuyển động lên xuống. Trên bàn máy, điện cực chi tiết gia công được gá đạt trong thùng 2 có chứa dung địch làm nguội. Chế độ gia công được kiểm tra, điều khiển bằng cơ cấu đo và điều chỉnh bằng biến trở 1 , rơ-le 6 .

4. Máy khoan

Máy khoan là loại máy công cụ rất phổ biến trong các phân xưởng cơ khí. Máy khoan theo kết cấu cơ thể chia ra các loại: máy khoan bàn, máy khoan đứng, máy khoan ngang, máy khoan cần. Theo số lượng trục chính có máy khoan một trục chính và máy khoan nhiều trục chính.

Các công việc nguội thường dùng máy khoan bàn và máy khoan đứng.

Máy khoan bàn dùng để khoan các lỗ cố đường kính không lớn. Hình 7.10 là một loại máy khoan bàn gồm một trụ đứng, trên có giă lắp động cơ điện, qua bộ truyền đai nhiều cấp (5 cấp) tới trục chính của máy để có thể thay đổi số vòng quay trục chính. Chi tiết gá trên bàn máy, khi khoan tiến dao bằng tay nhờ quay tay quay 8 .

Hinh 7.10. Máy khoan bàn HC-12
a) Hïnh dang chung:

1-Chi tiết gia công; 2-Bàn máy; 3- Dê máy; 4-Trư đứng; 5-Cần ngang; 6- Bạc trục chinh; 7- Trucc chính; 8- Tay quay; 9-Thanh răng; 10- Động co điện; 11- Già lăp động cơ; 12-Chốt hâm; 13-Trụ đé
b) Sc đồ đậng học

Máy khoan đíng dùng để khoan các lỗ lớn, hình 7.11 là máy khoan đứn một trục chính bao gồm thân máy 7 nằm trên đế máy 10 , trên đó gá đạa độn cơ điện, hộp tốc độ và hộp chạy dao. Máy có sáu tốc độ quay từ 45-47 vòng/phút và mười lượng tiến dao từ $0,15-0,3 \mathrm{~mm} /$ vòng.

Chi tiết được gá đặt trên bàn máy, kẹp bầng bu-lông qua rănh chư trên bàn máy, lượng tiến dao có thể bằng tay khi quay vô-lāng hoạc tự độ qua hộp tốc độ và hộp chạy dao. Bàn máy có thể nâng, hạ nhờ tay quay thông qua ān khớp với một cặp bánh răng côn.

Quy tắc an toàn lao động khi sử dụng máy khoan:

1. Máy khọan phải được nối mát trước khi sử dụng. Các bộ phạn chuyền động như bợ truyền đai, bọ truyền bánh răng phải được che chắn cẩn thận.
2. Chi tiết trước khi khoan phải được kẹp chắc chắn trên bàn máy hoạ̣c trên đồ gá kẹp chặt trên bàn máy, chi tiết nhỏ kẹp trên êto. Không được giữ chi tiết bằng tay khi khoan. Không được gá và thay dụng cụ khi trục chính còn đang quay.
3. Không được thởi phoi trên bàn hoặc ở trong lô, cầm phoi bằng tay, phải dùng bàn chải, móc để dọn phoi.
4. Khi khoan phải mặc gọn gàng, áo cài cúc, tay áo xắn cao, tóc dài phải buộc gọn gàng, đội mũ công tác.
5. Khi khoan kim loại từ vạt liệu có đọ giơn cao, cần đeo kính bảo hiểm để tránh phoi vụn bắn vào mắt.

5. Kỹ thuật khoan

Trước khi khoan cần kiểm tra tình trạng máy như lau chùi sạch bàn máy, lổ trục chính, kiểm tra nắp che của các bộ phận chuyển động, độ căng dai, quay và dịch chuyển lên ,xuống của trục chính cho ntẹ nhàng, cho máy chạy không tải, bôi trơn các

Hinh 7.11. Máy khoan đứng 2150
1-Bàn máy; 2-Mưi khoan;
3- Bảng điều khiên; 4-Trục chinh:
5- Hộp tớc độ; 6- Động cơ điện; 7- Thản máy; 8-Vô-lăng; 9- Tay quay; 10- Đé máy. bộ phận cần thiết...

Sau đó gá đạat chi tiết và dụng cụ lên máy, xác định chế độ gia công (n, s) trên máy. Khi khoan trên máy khoan để xác định só vòng quay của trục chính nở lấp mũi khoan trước hết phải xác định vận tốc cắt bẳng cách tra bảng hoặc tính toán theo các công thức thực nghiệm cho trong các sổ tay. Sau khi xác định được vận tốc cắt có thể xác định số vòng quay của trục chính theo cộng thức sau:

$$
n=\frac{1000 . \mathrm{v}}{\pi \cdot \mathrm{D}} \text { (vòng/phút) }
$$

Trong đó: v-Vận tớc cắt (m/phút);
D- Đường kính của mūi khoan (mm).
Sau khit tính dược n, ta chọn n theo máy đã chọn.
Lượng tiến dao tự đọng khi khoan trên máy khoan: s (mm/vòng) cững được xác định cấn cứ vào các bảng tra trong các sớ tay công nghệ gia công cơ. Khi khoan, việc chọn tớc độ cất và lượng tiến dao có ảnh hưởng lớn đến năng suất gia công, tuốl bên dụng cụ và chất lượng gia công của 18 . Thông thường tuới bén của mưi khoan sể tớt hơn khi dùng lượng tién dao nhỏ.

Khi gâ đạt chi tiế đế khoan cán căn cứ vào hình dáng, kích thước chi tiết gia công: vơi chi tiết nhỏ, đường kính 18 gia công đến 10 mm thường kẹ bằng êtơ tay; khoan các lơ lớn hơn, chi tiết được kẹp trên êtô máy. Các chi tiết lớn, nặng, cần khoan lổ lớn, được kẹp trực tiếp trên bàn máy, còn khi khoan lỗ nhỏ đến 10 mm chỉ cần đạ̀t trên bàn máy, không cần kẹp.

Khi khoan lố khoan lớn, thường người ta tiến hành khoan làm nhiều lần, bắt đầu với mũi khoan có đường kính nhỏ hơn Yồi tăng dần đến mũi khoan có đường kính cần khoan, vì nếu khoan ngay bằng mũi khoan lớn, lực chiểu trục khi khoan lớn, có thể gây biến dạng bàn máy, làm hư hỏng máy.

Khi kẹp trên êtô, dể bảo đảm vị trí chính xác của lổ, sau khi kẹp sơ bộ, dùng búa gõ nhẹ vào chi tiết để mặt dưới của chi tiết tiếp xúc với mặt phẳng định vị (hình 7. 12), sau đó mới kẹp lần cuối cho chắc chắn.

b)

Hinh 7.12. Kẹp chặt chi tiết trên êtô máy khi khoan a) Kep so bộ;
b) Gõ cho mặt dưới chi tiết tiếp xúc với mặt phẳng định vị.

Với chi tiết hình trư, đường kính không lớn thường gá đặt trên khối V (hình 7.13): chi tiết gá đạt trén khối V (2), có chớt chặn mặt đâuu, kẹp bằng đôn kep 3, khi khoan có phiến dẵn 1 trên dó lắp bạc 5 dăn hướng cho mũi khoan chính xác.

Khi khoan lờ tren chi tiết co so lượng lơn (sản xuất hàng loạt, loạt lơn), đé bảo đảm đọ chính xác vị trí các 10 khoan và năng suât, thường dưng bạc dān hướng (hình 7.14). Khi đó trên chi tiết 1 , gá đạ̀t nắp 2 (phiến dẫn tháo rời), trên đó có lắp các bạc dẫn hướng 3,5 dể dẫn hướng cho mũi khoan 4 khoan đúng vị trí yêu cầu.

Hình 7.14. Bạc dānn hưóng khi khoan lỗ 1- Phôi; 2- Phiến dẫn; 3,5-Bạc dẫn; 4-Mưi khoan.

6. Các dạng lô khoan

Lỗ khi khoan có nhiều dạng khác nhau: lỗ thông, lỗ không thông, lổ bậc, lổ trước khi cắt ren, lỗ trước khi doa...

Khi khoan các lô không thông, cần phải xác định chiều sâu lỗ khoan, sau khi gá đặt chì tiết gia công, cho dụng cụ tiếp xúc với bề mặt chi tiết, điều chỉnh vạch chia trên thước đo chiều sâu của máy về vị trí 0 . Trong khi khoan căn cứ vào khoảng cách đã dịch chuyển của vạch chia trên thước đo để biết được chiều sâu lô̆ khoan.

Điều chỉnh chiều sâu lổ khoan cũng có thể bằng cách gá đặt bạc chặn trên máy khoan. Khi bạc chạm vào bề mặt chi tiết nghīa là mũi khoan đā đạt chiều sâu theo yêu cầu.

Khi khoan lỡ sâu, để cài thiện điều kiẹn cắt và nâng cao độ bóng bề mặt, cần khoan theo chu trình: khoan một đoạn rời rứt muni khoan ra khỏi lỡ đế thoát phoị và cấp dung dịch trơn nguọi rồi mơi khoan tiép.

Khi khoan lỡ chi cơ mợt nửa (hình 7.15) có thể thực hiện bằng cách ghép hai chi tiế lại với nhau để khoan.

Khi khoan li̊ trên mặt cong của chi tiết hình trụ (hình 7.16), trước hết phải gia cơng sơ bố tạo mặt phả̉ng (bằng dao phay ngón), sao đó mới khoan, mục đích để cho hai lưỡi cất của mũi khoan cất đều, tránh cho mãi khoan bị đảy nghiêng.

Hinh 7.15. Khoan lỡ một nửa bầng cách ghép hai chi tié́t 4,5-Hai nửa chi tiết.

Hînh 7.16. Khoan lỗ trên mặt cong dạng trụ

7. Nguyên nhân sinh ra phế phẩm và gãy mŭi khoan trong khi khoan

Trong khi khoan có rất nhiều nguyên nhân có thể sinh ra phế phẩm hoạ̣c làm gãy mũi khoan như: máy khoan không chính xác, có độ đảo, dụng cụ phụ để kẹp mũi khoan không bảo đảm, mũi khoan mài chưa đạt yêu cấu, bị cùn trong quâ trình gia công, công nhân làm ẩu, không theo đúng quy trình đã vạch ra...

Bảng 7.2. giới thiệu các loại phế phẩm, nguyên nhân và biện pháp khắc phục.

Bảng 7.2. Phế phả̉m khi khoan, nguyên nhân và biện pháp khắc phục

Hinh thức phé phä́m N	Nguyên nhan sinh ra phǻ phấm	Phưong pháp khitc phuc
L8 gia công quá thó	- MOi khoan cùn hoậc mài knông chinh xác. - Ché đô gla công khơng phù hợp, lương tión dao lốn quá. - Nứ̛́c làm nguợi không đủ.	Mà lail trail khoan ctro chính xác. Thay đởi ché̛ độ gia công cho phù hơp. Cho thém nưóc làm nguộl, khoan theo đúng chu trinh: khoan, rút mưi khoan ra đé thoát phoi và caŕp dung dịch làm nguội rợi đưa vào khoan tiép.
$\left(\begin{array}{c} \text { Lở khoan } \\ \text { lớn hơn } \\ \text { so với } \\ \text { yêu cấu } \end{array}\right)$	- Đường kính müi khoan lón hon đường kính lō, mữi khoan có các lươi cắt khơng đới xứng. - Trục máy khoan bị đảo, bằu kẹp hoặc áo co̊n không bảo đảm đọ đo̊̀ng tâm.	- Chọn mūi khoan đúng yêu cấu, mài lại mũi khoan chính xác. - Kiển tra nếu đúng phải điều chỉnh lại, sưa chưa hoạc thay thé.
Lō bị lệch vit trí	- Vạch đường dấu không chinh xác. - Vị trí chi tiéćt trên bàn khoan không chinh xác (khi khoan bj đăy đi). - Mül khoan, đấu khoan bi lệch, lăc.	- Kiến tra lại đường dấu, vết nưng tâm cho chính xác, dùng mŭi khoan tâm khoan mời truffe cho đúng vil tri. - Kiâm tra vị trí chính xác, kẹp chi tié́t chắc chán trưóc khi khoan. - Kiẽ̛m tra vị trí của đầu khoañ, müi khoan, điéu chinh hoạ̣c thay the.
Lở bị nghieng	- Lắp chi tiết trến bàn khőng chính xác. - Bàn khoan và trục chính lắp mừi khoan không thẳng góc vơi nhau.	- Kiến tra vị trí của chi tiết, các tấm định vị ơ dưới phải đều, không lả̉n phoi, một dưới của chi tiết phải áp sát với taŕm định vị và song song với mạt bàn. - Kiếm tra cho rô nguyên nhån đe̊ tiến hành sửa chữa, điều chỉnh.
Chiểu sảu Iō̃ không đúng	- Cữ hành trinh điều chỉnh chưa đüng. - Mưi khoan bị đẩy lên trong bầu kẹp.	- Biểu chỉnh lại vị trt của cữ chiều sảu. - Kẹp lại mūi khoan cho sát vói đáy của báu kẹp.

7.2. KHOÉT LŐ

Khoét là phương pháp gia công mở rợng lô sau khi khoan hoặc lô có săn đé nâng cao dọ chính xác và đọ nhẳn bóng bế mặt 10 . Ngoài ra khoét còn dùng đế khoét lơ bạc, lơ côn, vát mép và khoả mật đáu của lơ.

Dưng cụ düng khi khoét là mail khoét. Theo hình dạng phín lười cât, dao khoét dượe chia ra dao khoćt trụ và dao khoét con. Theo kết cáu phán cât chia ra dao khoét môt rang, hai rang và nhiéu rang.

Dao khoét côn (hình 7.17 a) dùng dé̉ khoét 1δ côn cho 1δ láp vit chim dạng côn, dé vát mép và dế khoét côn của 10 ̂ 1 m . Góc côn của dao khoét thương là $30,60,90$ và 120°.

Dao khoét trul (hình 7.17 b) dùng khoét lỗ bạc để lấp bu lông chìm. Dao khoét trụ và dao khoét côn có loại có chốt dả̉n hướng ở phần đầu lữ̛̃i cắt để dẫn hướng dụng cụ theo lổ có sẩn khi gia công. Một số loại chốt dân hướng có thể tháo, lắp được để có thể thay thế khi dẩn hướng theo các lỗ có kích thước khác nhau. Ngoài ra còn dùng khoét dể khoả mặt đầu lổ (hình 7.18 c).

Hinh 7.17. Các loại dao khoét
a) Dao khoét lỗ côn; b) Dao khoét lỗ trụ; c) Sơ đồ gia cóng khi khoét.

Gia công bằng dao khoét tương tự như khi khoan, nhưng dao khoét có độ cứng vững cao hơn mũi khoan và thường có nhiều lưỡi cắt, do đó tốc độ cắt khi khoét lớn hơn so với khi khoan lỗ có cùng dường kính, nên độ chính xác và chất lượng bề mặt gia công sau khi khoét cao hơn khoan, khoét có thể sửa được sai lệch về vị trí tương quan của lổ do bước gia công trước để lại hoạac dùng khi gia công các lỗ có sẳn (đúc sẫn, dập sả̉n).

Lô sau khi khoét có thể đạt độ chính xác cấp $8-9$, độ nhám bề mạat $\mathrm{Rz} 20-\mathrm{Ra} 2,5$, khoét cũng là bước trung gian chuẩn bị cho bước gia công tinh lô bằng dao doa.

Dao khoét là dụng cụ có nhiều lưỡi cắt, được chế tạo từ thép gió P 9 , thép hợp kim dụng cụ 9XC, thép cacbon dụng cụ Y12A. Dao khoét theo đạ̉c trưng về kết cấu có thể chia ra hai loại: dao nguyên chiếc và dao lắp ghép. Dao khoét nguyên chiếc thường có 3 hoậc 4 lưỡi cất để gia công lỗ có đường kính từ $12-20 \mathrm{~mm}$, còn dao lắp ghép thường có 4 lưỡi cắt để gia
công lở có đường kính lớn hơn 20 mm . Trên đao khoét lắp ghép có rãnh cà vào váu trên trục dao.

Khoét lō thường được gia công trên các loại máy khoan, cách gá đặt dao khoét tương tự như cách gá đật mŭi khoan.

Lượng dư gia công khi khoét nèn chọn phù hợp đè bảo đảm đô chính xác và độ nhẵn bóng bế mặt: thường lấy chiều sâu cắt là 1 mm khi khoét 10 có đường kính đến 25 mm , $1,5 \mathrm{~mm}$ khi khoét lố có đường kính từ $26-35 \mathrm{~mm}$.

Tốc độ cắt khị khoét lō có đường kính đẻ́n 20 mm không vượt quá 250 vòng/phút, khi khoét 10 có đường kính lớn hơn 20 mm lấy nhỏ hon $100-150$ vòng/phút.

7.3. DOA LÓ

1. Khái niệm

Doa lổ là phương pháp gia công tinh lỗ sau khi khoan hoạc sau khi khoan và khoét để nâng cao độ chính xác và độ nhăn bóng của lỗ. Lổ sau khi doa đạt đọ chính xác cấp 7, độ nhám bề mặt Ra1,25.

Doa lổ dùng dụng cụ là dao doa, dao doa thường có hai loại: dao doa máy và dao doa tay. Theo hình dạng lỗ gia công, có dao doa trụ dể gia công lổ trụ và dao doa côn để gia công lỡ côn. Theo kết cấu, dao doa chia ra dao

Hinh 7.19. Dao doa
a) Dao doa nguyên chiếc; b) Dao doa lăp ghép;
c) Dao doa răng thả̉ng và răng xoăn vit;
d) Hinh dáng lười cất của dao doa.
doa nguyên chiếc (hịnh 7.19a) và dao doa lắp ghép (hình 7.19 b).
Dao doa trụ chia ra theo dạng đường rãnh của lưỡi cắt thành dao doa có răng thẳng và dao doa có răng xoắn vít (hình 7.19 c) có đường kính từ $3-50 \mathrm{~mm}$.

Trên dao doa trụ đự̛̣c chia thành ba phần: phần công tác, phần thân và phần chuối. Phần công tác của dao doa gồm phần cắt và phần sửa đúng. Phần cắt có dạng côn làm nhiệm cụ cắt gọt, phần sửa đúng có dạng trụ làm nhiệm vụ sửa tinh (cắt đi một lớp phoi rất mỏng) và dẫn hướng khi doa. Rãnh giữa các răng của dao doa để tạo thành luỡi cắt và chứa phoi trong khi gia công (hình 7.19 d).

Số răng của dao doa thường là số chẫn (từ 4 đến 12 răng). Dao doa máy có các rāng (bước) phân bố đếu trên đường tròn, dao doa tay các răng phân bố khòng đều, vì nếu các răng phân bố đều, khi quay tay quay để doa, ở mổi vòng quay, các răng phân bố đều dễ sinh rạ các vết dọc trục, tạo độ sóng trên bề mặt chi tiết, ảnh hưởng tới độ chính xác và chất lượng bề mặt gia công.

Doa lố bằng dao doa dạng xoắn vít thường bề mạat có dộ nhẳn bóng cao hơn so với dao doa răng thả̉ng, nhưng dao doa dạng xoắn vít chế tạo và mài sắc khó hơn, vì thế dạng dao doa này chỉ dùng để doa các lổ có rãnh trên lỗ (rãnh then, rãnh dầu...).

Dao doa cón bằng tay thường chế tạo thành một bộ từ $2-3$ chiếc. Bộ dao hai chiếc gồm một dao để gia công sơ bộ và một dao để gia công tinh. Bộ dao ba chiềc gồm một dao để gia công thố (hình 7.20 a), một dao để gia công bán tinh (hình 7.20 b) và một dao để gia công tinh (hình 7.20 c).

Do điều kiện cắt khi doa lô̆ côn khó khăn hơn so với doa lố trụ, vì thé răng trên dao doa côn thường chia thành các rãnh ngang để giảm bớt chiều dài lưỡi cắt khi bóc phoi, cải

a) thiện điều kiện cắt. Dao doa thô có các rãnh ngang bước lớn, dao doa bán tinh các rãnh chia nhỏ hơn để dễ bé phoi thành các mảnh nhỏ, chỉ có dao doa tinh không có các rãnh này.

b)
c)

Hinh 7.20. Bộ dao doa côn
a) Dao gia công thò;
b) Dao gia công bán tinh;
c) Dao gia công tinh.

Dao dou tăng là dao doa có thể điều chỉnh được đường kính từ $0,25-0,5$ mm , loại này thường dùng để gia công các lổ có đường kính từ 24 đến 80 mm .

2. Kỹ thuật doa

Khi doa máy, dao doa dược kẹp bằng bầu kẹp (với dao chuôi trụ) hoặc kẹp qua áo côn với lỗ côn của trục chính của máy (với dao doa chuôi côn). Truớc khi doa phải kiểm tra độ đồng tâm của dao doa so với trục chính của máy. Nếu trục chính của máy có độ đảo, lổ sau khi doa sẽ bị lay rộng. Khi đó để bảo đảm độ chính xác của lỗ gia công, nên dùng trục dao doa tự lựa.

Dao doa là loại dao định kích thước dùng để gia công tinh lổ, vì thế lượng dư để lại trước khi doa phải xác định hợp lý. Nếu lượng dư lớn quá dao doa không cắt được hoặc cắt dược nhưng dao rất chóng cùn; còn nếu lượng dư nhỏ quá, dao doa dể bị trượt trong lồ, ành hưởng xấu tới chất lượng gia công. Lượng dư khi doa thô: $0,1-0,15 \mathrm{~mm}$, khi doa tinh: $0,02-0,05 \mathrm{~mm}$. Lổ có đường kính nhỏ hơn 25 mm thường chia thành hai bước doa thô và doa tinh. Với lỗ có dường kính lớn hơn 25 mm thường gia công sơ bộ bằng dao khoét trước khi doa thô và doa tinh.

Ví dụ: lỗ gia công là 30 H 7 , trình tự gia công như sau: khoan lỗ đường kính 28 mm , khoét rộng $29,6 \mathrm{~mm}$, doa thô đườmg kính $29,9 \mathrm{~mm}$ và doa tinh đat 30 H 7 .

Hình 7.21 là sơ đồ trình tự gia công khi doa lỗ có đường kính nhỏ hơn 25 mm .

Hinh 7.21. Trình tự gia công lỗ có đường kinh đến 25 mm a) Khoan; b) Doa thô; c) Doa tinh.

Khi doa tay, trước hết cần kiểm tra chất lượng dao doa: lưỡi cắt phải sấc, không có vết sứt mé trên lưởi cắt.Trước khi doa tay, chi tiết dược kẹp chặt trên êtô, khi doa cần sử dụng dung dịch bôi trơn, làm nguội. Khi gia công thép dùng dầu khoáng, gia công đồng dùng ê-mun-xi, gia công nhôm dùng dầu hoả trộn với dầu thông... Dao doa cần phải đưa vào thẳng góc với lổ, dể có thể lấy phoi đều trên chu vi lỗ. Khi doa, dao doa vừa quay theo chiều kim đồng hồ vừa tiến chậm dọc theo lổ. Không được quay dao ngược chiều kím đồng hồ vì có thể làm sứt mẻ lưỡi cắt và tạo ra vết xước trên lố.

Bài tập 1: Gia công nguội mặt phẳng của tấm lớt (hình 4.22).

Hình 4.22. Tấm lót
Chuẩn bị phôi liệu: Thép tấm đã cắt bằng đá cắt hoạ̣c bằng hàn hơi có kích thước chiều dài, chiều rộng, chiều cao lớn hơn $1-1,5 \mathrm{~mm}$ so với bản vẽ sản phẩm, sau đó làm sạch ba via .

Chuẩn bị dụng cư: Thước cạ̣p, thước lá, dưỡng kiểm thả̉ng, thước góc 90 , mũi vạch dấu, dục nhọn, búa, giũa dẹt phẳng thô và tinh, mũi khoan, khoét.

Các butớc tiến hành:

1. Lau sạch phôi, bôi phấn lên bề mặt cần lấy dấu, lấy dấu các kích thước bao ngoài của chi tiết, dùng đục nhọn núng tâm các đường vạch dấu.
2. Kẹp chi tiết lên êtô, cho mặt A hướng lên trên sao cho đường vạch dấu song song và cao hơn mép trên của má êtô. Dùng giũa phá để giữa thô mặt phẳng A , để chừa một lượng $0,2-0,5 \mathrm{~mm}$ cho gia công tinh. Trong quá trình giưa, kiểm tra dộ thẳng của bề mặt bằng dưỡng kiểm (xem hình 2.23) ở một só vị trí trên mặt A.
3. Dùng giūa mịn để giũa tinh mặt phẩng A và kiểm tra như ở bước 2 .
4. Tháo và quay phôi cho mặt B hướng lên trên và kẹp trên êtô có dệm thêm tấm lót vào má êtô để tránh tạo vết trên mặt đã gia công A . Dùng giũa phá để giũa thô mặt B , để chừa lượng dư cho gia công tinh. Trong quá trình giũa, dưng dưỡng kiểm, thước góc để kiểm tra độ vuông góc giữa mặt A và mặt B ở các vị trí khác nhau.
5. Dùng giũa mịn để giūa tinh mặt phẩng B và kiểm tra độ vuông góc với mặt A bà̀ng thước góc 90°.
6. Tháo và quay phôi để cho mặt C hướng lên trên, giũa thô và tinh mặt C theo các bước như đã làm với mặt B .
7. Kiểm tra lần cuối độ vuông góc của các mặt B, C so với A .
8. Giũa nguội thô và tinh các mặt $\mathrm{D}, \mathrm{D}, \mathrm{E}$ sao cho song song tương ứng với các mặt $\mathrm{A}, \mathrm{B}, \mathrm{C}$ và bảo đảm kích thước bao ngoài của chi tiết cho trên bản vē. Dù̀ng thước cặp, thước góc, dưỡng kiểm để kiểm tra các yêu cầu về kích thước, độ song song, độ vuông góc tương ứng.
9. Bôi phấn lên mặt A , dùng thước cạ̣p, thước lá, muni vạch để lấy dấu tâm hai lố $\phi 9$. Dùng dục nhọn núng tâm hai lō .
10. Kẹp chi tiết lên êtô, gá đặt trên máy khoan, khoan từng lổ theo thứ tự : trước hết khoan lổ $\phi 9$, sau đó dùng mũi khoan lớn ($\phi 18 \mathrm{~mm}$) mài góc đỉnh 90° hoặc dùng mũi khoét côn để gia công lổ côn $\phi 18 \mathrm{~mm}$, sâu $4,5 \mathrm{~mm}$ Kiểm tra chiểu sâu lỗ khoan và khoảng cách 70 mm giữa hai lỗ .
11. Sửa nguội, vát các cạnh sắc, ba via ở mép lổ .

Cáu hỏi

1. Khoan lổ thường dùng khí nào? Chất lượng gia cơng sau khi khoan?
2. Các loại dụng cụ dùng khi khoan?
3. Cách mài sắc mũi khoan và kiểm tra sau khi mài?
4. Các loại dụng cụ phụ để gá đặt mũi khoan?
5. Các loại công cụ để khoan dùng cho công việc nguội?
6. Các loại máy khoan thông dụng?
7. Các quy tắc an toàn lao động khi khoan?
8. Bạc dả̉n hướng mũi khoan là gì? Tại sao khi khoan nên dùng bạc dẫn hướng?
9. Khi khoan các lỗ nửa, lổ sâu, lỗ trên mặt cong cần có những biện pháp gì?
10. Khoét là gì? Khi nào dùng khoét?
11. Các loại dụng cụ dùng khi khoét?
12. Doa lô là gì? Khi nào dùng doa?
13. Các loại dao doa? Phạm vi sử dụng của từng loại?
14. Tại sao trước khi doa cần phải kiểm tra, xác định lượng dư hợp lý?

Chương 8

CẮT REN

8.1. KHÁl NIỆM VỂ REN

Nếu trên một hình trụ tròn đường kính d , ta lấy một miếng giấy hình tam giác vuống có cạnh đáy AB là chu vi hình trụ (d), chiều cao $\mathrm{BC}=\mathrm{s}$, đem quấn lên hình trụ đó thì cạnh huyền AC sẽ vẽ thành đường cong trên mặt trụ và đường cong đó gọi là đường xoắn vít (hình 8.1).

Hinh 8.1. Sự hình thành của đường xoán vít
a) Hướng phải; b) Hương trái;

Miếng giấy tam giác đó có thể quấn theo chiều kim đồng hồ hoặc ngược chiều kim đồng hồ. Khi quấn vào mà đường cong đi lên dần theo bên phải (a) thì gọi đó là đường xoắn phải (hướng ren phải), còn đường cong đi lên theo bên trái (b) thì gọi là đường xoắn trái (hướng ren trái).

Như vậy nếu trên ống trụ đó có những rãnh xoắn có hình dạng, chiều sâu thì sẽ được những đường ren. Nếu cắt dọc theo mặt cắt của đường ren có thể thấy hình dạng của đường ren hoặc mặt cắt của trục ren (hình 8.2) và người ta gọi đó là prô-phin ren (dạng ren).

Trên mặt cắt của trục ren có thể có một đường xoắn vít (ren một đầu mối) hoặc nhiều đường xoắn vít (ren nhiều đầu mối). Ngoài dạng ren, hướng ren, số đầu mối ren, ren còn có các thông số khác như: bước ren, góc prô-phin ren, chiều sâu ren, đường kính ngoài, đường kính trung bình, dường kính chân ren...

Hinh 8.2. Các thông số và dạng ren
a) Ren tam giác; b) Ren vuông; c) Ren thang; d) Ren răng cưa; đ) Ren cung tròn.

- Bước ren: là khoảng cách giữa hai cạnh ren song song kề nhau, đo theo phương song song với trục ren (s), hay nói cách khác là cứ sau một vòng ren (d) thì nâng lên một khoảng (s) chính là bước ren (hình 8.1).
- Góc prô - phin ren: Là góc giữa hai cạnh prô - phin ren đo trong mặt phẳng qua tâm trục ren.
- Chiềl cao ren: là khoảng cách từ dỉnh ren tới chân ren.
- Đıtờng kinh dỉh ren (d_{e}) là đường kính lớn nhất đo qua đỉnh ren, vuông góc với đường tâm trục ren.
- Dường kính trıng bình (d_{o}) là đường kính đo qua điểm giữa của prôphin ren (từ chân ren tới đỉnh ren) song song với đường tâm ren.
- Đường kíhh chân ren $\left(d_{i}\right)$ Là đường kính nhỏ nhất giữa hai chân ren đối diện, đo theo hướng vuông gốc với đường tâm (hình 8.3).

Hinh 8.3. Các thông sớ của ren
a) Ren ngoài (bu lông); b) Ren trong (đai $\delta \mathrm{c}$).

Các dạng prô-phin ren: Prô-phin ren là dạng ren dược sử dụng trong các loại bu lông, đai ốc, vít cấy tiếu chuẩn:

- Dang ren tam giác (hình 8.2 a) là loại ren thông dụng nhất, có độ kín khít cao, thường sử dụng trong các kết cấu ren vít, các ống nối thuỷ lực, nút ren ở các van trượt...
- Dạng ren vuông (hình 8.2 b) và ren thang (hình 8.2 c) thường dùng trong các cơ cấu truyền động như các vít me hành trình, vít me cái của máy tiện ren, vít me tải, vít me trong êtô nguội...
- Dạng ren răng cura (hình 8.2 d) thường dùng trong các cơ cấu chịu lực lớn theo một hướng như máy nén dạng cơ khí hay thuỷ lực, các loại kích...
- Dạng ren cung tròn (hình 8.2 đ́) có thời gian sử dụng lâu, kể cả khi làm việc trong điều kiện có nhiều tạp chất, chất bẩn, dạng ren này cũng dùng trong các cơ cấu móc nối toa tàu, nối các đường ống nước lớn...

8.2. CAC HỆ REN

Trong chế tạo máy thường sử dụng ba hẹ ren: ren mét, ren Anh và ren ớng.

- Ren hệ mét (hình 8.4 a) là ren có dạng tam giác đều, có góc đỉnh là 60°. Ren hệ mét kí hiệu là M và số tiếp theo để chỉ đường kính ngoài và bước ren. Ren hệ mét có ren bước lớn và các bước nhỏ khác, riêng với ren bước lớn trong ký hiệu không ghi bước ren.

Ví dụ: $\mathrm{M} 40 \times 1,5$ là ren hệ mét có đường kính ngoài là 40 mm , bước ren là $1,5 \mathrm{~mm}$.

M24 là ren hệ mét có đường kính ngoài là 24 mm , bước lớn theo tiêu chuẩn là 3 mm .

Hình 8.4. Các hệ ren
a) Ren hệ mét; b) Ren hệ Anh; c) Ren ống.

- Ren Anh (hình 8.4 b) là ren dạng tam giác có góc đỉnh là 55°, ren Anh
được ký hiệu theo só vòng ren trên chiều dài một tấc Anh ($25,4 \mathrm{~mm}$).

Ví du: Ren $1 / 4$ " là ren Anh có 4 vòng ren trên một tấc Anh.

Ren $1 / 2^{\prime \prime}$ là ren Anh có hai vòng ren tren mơt tấc Anh.

- Ren óng (hình 8.4 c) là ren đo theo só vòng ren trên 1' (1 tấc Anh), góc pro- phin ren là 55°. Đînh của ren trên vít và đai ớc được chia ra theo dạng phẳng hoặc cling tròn. Kí hiệu của ren ơng là | |
| :---: |$/ 4^{\prime \prime}, \delta 3 / 4^{\prime \prime} .$.

Ren ớng thường dùng nơi ớng trong các đường ớng khí nén, thuỷ lực chịu áp lực và cần độ kín khít cao.

8.3. DỤNG CỤ CǺT REN

Dụng cụ cắt ren khi gia công nguội chia

Hinh 8.5. Ta rô tay làm hai nhóm:

- Dụng cụ để cắt ren trong lô (các loại ta rô).

Hinh 8.6. Bộ ta rô tay
a) Ta rô só $1 ;$ b) Ta rô sơ $2 ; \mathrm{c}$) Ta rô só 3 .

- Dụng cụ cắt ren trên trục (các loại bàn ren).

1. Ta rô (hình 8.5)

Ta rô là dụng cụ cất ren có hình dáng như một trục ren trên dó có các rảnh dọc hoặc xoắn vít để tạo nên các lưởi cắt và thoát phoi khi cắt ren.

Ta rố gồm phần chuôi và phần công tác. Phần chuôi của ta rố tay được phay vuông để kẹp vào tay quay ta rô khi cắt ren. Phẩn công tác của ta rô là phần có ren, trên đó có các rãnh thoát để tạo lưỡi cắt cho ta rô và để chứa phoi. Ta rô các lỗ ren có đường kính đến 20 mm thường có 3 rãnh dọc, còn các lô có đường kính từ $20-40 \mathrm{~mm}$ có 4 rãnh dọc. Các rãnh thoát trên ta rô thường có hai loại: rãnh thẳng và rãnh xoắn
vít. Ta rố có rãnh xoắn vít thường dùng để cất ren chính xác. Rãnh xoắn nghiêng hướng phải dùng cho ta rố ren trái và rānh nghiêng hướng trâi dùng cho ta rô ren phải.

Phần cơng tác của ta rô chia thành hai đoạn: đoạn đâu được mài vát côn để dẳn hướng ta rồ vào 10 gia công và cắt ren sơ bồ, doạn sau để cát ren cho đúng chiểu sâu và sửa đúng biên dạng ren.

Ta rô có nhiếu loại: ta rô tay, ta ro máy, ta rô đấu cong...
Ta rô tay là ta rô dùng tay quay lắp vào chuôi vuông của ta rô dê cắt ren. Ta rố tay được ché tạo thành bộ ta rô ($2-3$ chiéc) cho mơi loại ren (hình 8.6). Ta rô só 1 dùng để gia công tho $1 \delta \delta$ ren, ta rô só́ 2 dế gia công bán tinh cho 1δ ren chính xác hơn, ta rố số 3 để gia công lần cuới và sửa đúng ren. Trên thân ta rồ ở phẩn chuôi được vạch dáu ngang để đánh dấu số của bộ ta rố (từ một vạch dến ba vạch tương ứng từ số 1 đến số 3).

Theo kết cấu của phẩn cắt, ta rô chia thành hai loại: loại có phần cắt trụ (hình 8.7 a) và loại có phần cắt côn dài (hình 8.7 b). Loại đâu thường dùng để gia công các lố ren cạn (lố ren không thông), loại thứ hai có phần cắt côn dài hơn, chiều cao ren trên ta rô tăng dần cho đến khi đạt chiều cao ren của phần ren sửa đúng. Loại này dùng gia công lở ren thông suốt, trong một lần ta rô.

Ta rô đai ốc (hình 8.7 c) dùng để cắt ren trên đai ốc bằng tay hoạ̣c bằng máy.
 Loại này có phần chuôi được làm dài hơn với mục đích có thể chứa được nhiều đai ốc hơn sau khi cắt ren. Ta ró bàn ren (hình 8.7 d) có phần côn cắt và phần cắt thô, bán tinh dải hơn để gia công ren trong một lần cắt.Ta rô ren tinh (hình 8.7 d) dùng để gia công tinh ren trên bàn ren sau khi cắt ren bằng ta rô. Các rãnh thoát trên ta rô ren tinh là các rãnh xoắn vít.

d)

d)

Hinh 8.7. Kết cấu của ta rô
a) Ta rô trụ; b) Ta rô côn; c)Ta rô đai óc;
d) Ta rồ ban ren; đ) Ta rô tinh bàn ren.
2. Bàn ren (hình 8.8) dùng để cắt ren ngoài bằng tay hoặc bằng máy. Theo đặc điểm kết cấu, bàn ren có nhiều loại: bàn ren trơn, bàn ren ghép, bàn ren chuyên dùng (để cắt ren ớng).

Hình 8.8. Bàn ren
a) Bàn ren liển; b) Bàn ren xẻ rãnh; c) Bàn ren ghép.

- Bàn ren tròn (hình 8.8 a) thực chất là một đai ớc làm bằng thép dụng cụ, được tôi cứng, trên chiều dài phần ren 2 có các rãnh dọc thông suốt đẻ tạo thành lưỡi cắt và để chứa phoi khi cắt ren. Cả hai phía đầu bàn ren được vát côn từ $1,5-2$ vòng ren để dẩn hướng khi cắt.

Bàn ren tròn có nhiều cỡ kích thước dùng để cắt ren ngoài bằng một lần cắt, bảo đảm độ chính xác dạng ren, tuy nhiên nāng suắt cắt thấp và bàn ren nhanh mòn.

Theo tiêu chuẩn, bàn ren tròn dùng cắt ren ngoài có đường kính từ 1 52 mm vơi ren hệ mét bước tiêu chuả̉n, từ $1 / 4$ dến $2^{\text {"' }}$ với ren Anh, từ $1 / 8$ đến $11 / 2^{\prime \prime}$, vơi ren óng, với ren bươc nhỏ đến 135 mm .

Bàn ren tròn được gá đạat trên tay quay bàn ren và dùng tay để quay khi cát ren.

- Bàn ren xè rãnh (hình 8.8 b) trên bàn ren có xé rảnh suớt, chiéu rọ̣ng rãnh $0,5-1,5 \mathrm{~mm}$ cho phép diéu chình đường kính ren trong phạm vi từ 0,1 $-0,25 \mathrm{~mm}$. Do có xè rãnh nên đọ cứng vững của dụng cụ khi cát gọt không cao, dạng ren cát được không chính xác.
- Bàn ren ghép (hình 8.8 c) gồm hai nửa hình khơi họp, trền mठ̄i nửa có ghi kích thước dương kính ren và các sớ 1,2 để chi vị trí của chúng khi lắp vào tay quay bàn ren. Mặt ngoài bàn ren được tạo rãnh g $6 \mathrm{c} 120^{\circ}$ đế gá đặt chính xác vào vấu của tay quay.

Bàn ren ghép được chế tạo theo tiêu chuẳn, với ren hệ mét có các loại từ M6 đến M52, với ren Anh từ $1 / 4$ đến $2^{\prime \prime}$, với ren óng từ $1 / 8$ đến $13 / 4^{\prime \prime}$.

Bàn ren ghép được lắp trên tay quay bàn ren (hình 8.9 a). Tay quay bàn ren gồm khung 1 , tay quay 2 và vít kẹp 5 , các nửa bàn ren được xác định chính xác vị trí nhờ các vấu trền tay quay vào các rãnh có góc 120° trên bàn ren và kẹp chặt nhờ vít 5 .

Hinh 8.9. Tay quay bàn ren
a) Tay quay đê lăp bàn ren ghép:

1- Khung; 2- Tay quay; 3-Bàn ren ghép; 4-Miếng kẹp; 5-Vit kẹp;
b) Tay quay đé̉ lăp bàn ren gia công ren ống:

6- Tay quay; 7-Tay vặn; 8-Bàn ren ghép; 9-Thân; 10-Vạch chia; 11- Trục vít điều chỉnh.

Bàn ren ghép dược chế tạo thành bộ, mỗi bộ có từ $4-5$ cặp. Tay quay bàn ren dược chế tạo có sáu cỡ kích thuớc từ só 1 đến só 6 .

- Bàn ren chuyên dùng để gia công ống gồm ba mảnh dùng gia công ren trên ống có đường kính từ 13 đến 50 mm . Tay quay bàn ren (hình 8.9 b) gồm thân 9 với hai tay quay 6 , trong thân có gá đặt bàn ren ghép 8 , khi quay mâm quay 12 bằng tay quay 7 có thể điều chỉnh ra vào các mảnh bàn ren để gia công các đường kính khác nhau. Möi đường kínin ngoài cần gia công ren được điều chỉnh bằng cách quay trục vít 11 , kích thước điểu chỉnh được chỉ thị trên vach 10 của than bàn ren.

8.4. KY̌ THUÅT CÅT REN

1. Ky thuật cát ren trong

Trước khi cắt ren bằng ta rô, phải khoan lổ bằng mũi khoan. Khi chọn đường kính mũi khoan cẩn chú ý để bảo đảm đường kính lô trong một giới hạn xác định.

Khi cắt ren bằng ta rố, kim loại vùng tạo ren thường bị chèn ép nên đường kính mũi khoan chọn để khoan lỗ phải lớn hơn đường kính chân ren. Nếu đường kính lỗ bằng đường kính chân ren, khi ta rô xảy ra hiện tượng chèn ép mạnh, gây nhiệt lớn, phoi kim loại chảy dẻo bám vào các lưỡi cắt của ta rô, khi đó ren tạo ra dễ bị sứt mẻ, ta rô dễ bị kẹt, gãy. Vật liệu gia công cạng dẻo, dai, khả nāng xảy ra hiện tượng trên càng lớn.

Ngược lại, nếu lổ khoan lớn quá so với đường kính chân ren, lổ ren tạo ra khi ta rô sẽ có chiều cao nông, ren không đạt yêu cầu.

Vì thế trước khi ta rô lỗ ren, cần chọn dường kính mũi khoan để khoan lỗ cho từng loại ren với từng loại vật liệu, cho trong các bảng 8.1, bảng 8.2.

Bảng 8.1. Đường kính của mũi khoan đùng để khoan lỗ trước khi ta rô các lỗ ren hệ mét, bước lớn tiêu chuẩn

Bừ̛̀ng kính ngoài của ren (mm)	Bưác Ren (mm)	Đường kinh mül khoan (mm) cho theo vật jiệu gia công	
		Gang, đồng thau	Thép, đổng đỏ
1,0	0,25	0,75	0,75
1,2	0,25	0,95	0,95
1,6	0,35	1,25	1,25
2	0,4	1,6	1,6
2,5	0.45	2	2
3	0,5	2,5	2,5
4	0,7	3,3	3,3

Bäng 8.1 (tiếp theo)

5	0,8	4,1	4,2
6	1	4,9	5,0
8	1,25	6,6	6,7
10	1,5	8,3	8,4
12	1,75	10	10,6
14	2	11,7	11,8
16	2	13,8	13,8
18	2,5	15,1	15,3
20	2,5	17,9	17,3
22	2,5	19,1	19,3
24	3	20,6	20,7
27	3	23,5	23,7
30	3,5	26	26,1
33	3,5	29	29,2
36	4	31,4	31,6
39	4	34,4	34,6
42	4,5	36,8	37
45	4,5	39,8	40
48	5	42,7	42,7
52	5	46,2	46,4

Bảng 8.2. Đường kính của mũi khoan dùng để khoan lỗ trước khi cắt ren hệ Anh và ren ống

Ren Anh			Ren ống	
Kích thước ren (tấc Anh)	Đường kính mũi khoan (mm) cho theo vật liệu gia công		Kich thưóc ren (tác Anh)	Đường kinh mưi khoan (mm)
	Gang, đống thau	Thép, đông ơo		
1/8"	-	-	1/8"	8,8
1/4"	5,0	5,1	1/4"	11,7
$5 / 16^{\prime \prime}$	6,4	6,5	3/8"	15,2
3/8"	7,8	8,0	1/2"	18,6
1/2"	10,3	10,5	3/4"	24,3
5/8"	13,3	13,5	$1{ }^{11}$	30,8
3/4"	16,2	16,5	11/4"	39,
7/8"	19	19,5	43/8"	39,2
1 "	21,8	22,3	11/2"	41,6
11/8"	24,6	25		45,1
11/4"	27,6	28		
11/2"	33,4	33,7		
13/4"	38,5	39,2		
2	43,7	44,8		

Trong trường hợp không có bảng tra, đường kính lố trước khi cắt ren (D) có thề xác định theo công thức:

$$
D=d-1,6 \times t
$$

Trong dó:

> d: Đường kính ren cẩn cất (mm);
> t: Chiêu sâu ren (mm).

Kích thước chiều dài tay quay ta rô chọn theo đường kính ren cần cất (dể tránh tay quay dài quá dẽ̉ làm gãy ta rô khi quay). Chiều dài tay quay ta rô (L) được xác định theo công thức:

$$
\mathrm{L}=20 \times \mathrm{d}+100(\mathrm{~mm}) .
$$

Trong đó: d : Đường kính ren (mm).
Chi tiết sau khi khoan lô được kẹp chặt trên êtô để vị trí tâm lŏ khoan thẳng đứng, sau đó đưa ta rô só 1 (gia công thô) vào trước để cắt ren. Khi gia cong, dùng tay trái ấn tay quay cùng ta rô thả̉ng theo lō, tay phải xoay cho đến khi ta rô tạo ra một vài vòng ren và được dẫn theo lổ ren, khi đó dùng cả hai tay để quay tay quay (hình 8.10).

Hình 8.10. Ta rô lớ ren trên đai ớc

Để giảm nhẹ sức lao động khi ta rô, tránh kẹt, gãy ta rô, thông thường khi quay ta rô vào được một, hai vòng thì lại quay ngược lại khoảng nửa vòng để ta rô bẻ phoi, khi quay vào tiếp sẽ đỡ nặng.

Khi ta rố cần chú ý thực hiện các quy định sau:

1. Khi ta rô các lổ ren sâu trên các vật liệu dẻo và dai (đồng, nhôm, bacbit...) cứ sau một khoảng chiều dài cắt ren nhắt định, cần quay ngược lại và rút ta rố ra khỏi 10 , làm sạch phoi trên ta rố trước khi đưa vào cắt ren tiếp.
2. Khi ta rô lồ ren, phải dùng bộ ta rô theo thứ tự, từ só thấp đến số cao (từ cắt thô đến cắt tinh). Nếu dùng ta rồ số cao đưa ngay vào lô vừa khoan, khi quay ta rô sẽ rất nặng, ta rồ dễ bị gãy, ren không bảo đảm chất lượng.
3. Lổ ren cạn (không thông) cần ta rô sâu hơn so với chiều sâu ren yêu cẩu, vì trên ta rô có phân cắt được vát côn, nên trên chiều dài phần cắt đó, chiếu cao ren chưa đủ.
4. Trong quá trình ta ro, cân chú y quain sát để ta rơ luôn thả̉ng góc với mặt đáu đường tam 10 , sau khi quay được $2-3$ vòng ren trên 10 , láy thước góc 90° để kiểm tra đọ vuông góc này.
5. Để giảm biển dang nhiệt khi ta rô và nâng cao chất lượng ren khi gia công, cần dùng dung dịch bôi trơn, làm nguội. Với vạt liệu gia công là thép, dùng é-mun-xi, dầu máy; với nhôm dùng dâu hoả... nhưng khi cắt ren trên gang không cần dung dịch trơn nguội.

2. Kỹ thuật cất ren ngoài

Cũng như khi cất ren trong, khi cắt ren ngoài bằng bàn ren cần xác định đường kính ngoài của trục cần cắt ren. Thông thường đường kính trục trước khi cất ren nhỏ hơn đường kính ngoài của ren từ $0,3-0,4 \mathrm{~mm}$.

Hinh 8.11. Cắt ren ngoài bằng bàn ren 1-Bàn ren; 2-Tay quay; 3-Etơ; 4-Miếng đệm.

Trục cần cắt ren 5 dược kẹp thả̉ng góc trên êtô (hình 8.11), phần nhô ra của trục trên má êtô 4 nên ở trong khoảng $20-25 \mathrm{~mm}$, thường dài hơn một ít so với chiều dài ren cần cắt. Để dẩn hướng cho bàn ren, đầu trục khi tiện được vát góc. Khi thao tác, dùng hai tay cầm tay quay 2 trong có lắp bàn ren 1 đặt cân đới trên chi tiết để tránh cắt ren bị lẹ̣ch, vừa ấn vựạ quay tay quay
theo chiều ren cho đến khi tạo ra được một vài vòng ren thì dùng hai tay quay bàn ren vào từ một đến hai vòng rồi quay ngự̛̣ lại khoảng nửa vòng để bẻ phoi khi cắt.

3. Kiểm tra ren sau khi gia công

Ren trong lô được kiểm tra bầng duỡng ren mẫu. Với ren ngoài có thể dùng thêm các dụng cụ khác như pan-me đo ren, thưởc đo ren. Duỡng đo ren mét (ren quớc tê) thương chế tạo thàmh bộ để đo các buớc ren từ 0,4 đến 6 mm ; ren Anh từ $4 \frac{1}{2}$ đến 28 . Dương đo ren chỉ dùng để đo và kiển tra bước ren.

Bài tập 1: Gia công nguội các cạnh vuông và gia công tinh ren của bu lông (hình 8.12).

Hinh 8.12. Bu lông M16 $\times 1,5 \mathrm{~mm}$
Chuả̛n bị phôi liệu: Dùng thép tròn $\phi 45$ tiện tạo hình bu lông có đường kính lớn là $\phi 44 \mathrm{~mm}$, tiện bậc và tiện sơ bộ ren M16 $\times 1,5 \mathrm{~mm}$.

Chuẩn bị dung cư: Thuớc cặp, thuớc lá, com pa, thuớc góc 90°, duỡng kiểm thẳng, mūi vạch, đục nhọn, búa, bàn ren, tay quay bàn ren, giũa dẹt phẳng thô và mịn.

Các bước tiến hành:

1. Lau sạch phôi, bôi phấn lên mặt dầu $\phi 44 \mathrm{~mm}$, dùng dunng cụ vạch các đường thẳng vuông góc qua atàm chi tiết, vạch dáu các cạnh vuông kích thước $30 \times 30 \mathrm{~mm}$ trên phôi. Dùng dục nhọn núng tâm các dường dấu của cạnh vuông.
2. Kẹp phôi trên êtô vào hai mặt đâu của đường kính $\phi 44 \mathrm{~mm}$ sao cho mặt phẳng A hương lên trên để dường vạch dấu song song và cao hơn mép
trên má êtô. Dùng giũa phá giña thô mặt phẳng A , để chừa lượng dư 0,2-0,5 mm cho gia công tinh. Dùng dưỡng kiểm để kiểm tra độ thẳng.
3. Tháo và quay phôi cho mặt B hướng lên trên như khi gia công mặt phẳng A . Dùng giũa phá để giũa thô mặt phẳng B để chừa lượng dư cho gia công tinh. Dùng thước góc, dưỡng kiểm để kiểm tra độ vuông góc giữa hai mặt A và B .
4. Giūa phá các mạat phẳng còn lại tương tự như cách đã trình bày ở trên. Trong khi giũa, dùng dưỡng kiểm, thước cặp, thước góc kiểm tra độ phả̉ng, khoảng cách, độ song song, độ vuông góc giữa các bề mặt đang gia công so với các bề mặt đã gia công.
5. Dùng giũa mịn để giũa tinh các bề mặt bảo đảm độ nhẵn bóng bề mặt và độ chính xác. Trong khi giũa dùng các dụng cụ kiểm tra độ vuông góc, độ song song, kích thước 30 mm cho trên bản vẽ.
6. Kẹp phần đầu vuông vào hai má êtô, hướng cho phần ren lên trên, dùng bàn ren $\mathrm{M} 16 \times 1,5$ để gia công tinh ren. Khi quay tay quay bàn ren cần chú ý dẫn hướng cho bàn ren theo dường ren đã gia công, sau khi quay bàn ren vào từ $1-2$ vòng lại quay ngược lại khoảng nửa vòng dể bẻ phoi, tránh cho bàn ren bị kẹt, quá tải.

Bài tập 2: Gia công nguội đai ốc ren sáu cạnh (hình 8.13).

Hinh 8.13. Đai ốc ren

Chuẩn bị phôi liệu: Dùng thép tròn $\phi 40$ tiẹ̀n tạo hình chi tiết $\phi 35 \times 24$, vát mép cạnh ngoài.

Chuẩn bị dụng cụ: Thước cặp, thước lá, dưỡng kiểm thẩng, dưỡng kiểm góc 60°, com pa, mũi vạch, búa, giūa dẹt thô và mịn, ta rô tay, tay quay ta rô, mũi khoan, khoét.

Các bước tiến hành:

1. Lau sạch phôi, bôi phấn lên mặt đầu đai ớc, dùng dụng cụ vạch dáu tâm chi tiết, dùng dục nhọn núng tâm chi tiết, dùng com pa vạch các đường tròn $\phi 33,6 \mathrm{~mm}, \phi 14,5 \mathrm{~mm}$, đường dáu kiểm tra $\phi 30 \mathrm{~mm}$. Vạch dấu 6 cạnh của hình lục giác nội tiếp trong dương tròn $\phi 33,6 \mathrm{~mm}$.
2. Kẹp chặt chi tiế trên êtô sao cho đường vạch dấu một cạnh của hình lục giác đều song song và cao hơn má êtố khoảng $5-7 \mathrm{~mm}$. Dùng giũa phá để giūa thô cạnh này, chừa lượng dư khoảng $0,2-0,5 \mathrm{~mm}$ cho gia công tinh.
3. Tháo và quay phôi đi một góc để cạnh tiếp theo lên trên và giũa thô cạnh này, chừa lượng dư cho gia công tinh. Trong khi giũa dùng dưỡng kiểm thẳng và dưỡng kiểm góc 60° dể kiểm tra độ thẳng của bề mặt và góc 60° giữa hai cạnh.
4. Giũa thô cạnh thứ ba theo trình tụ̣ kể trên.
5. Giũa thô các cạnh còn lại. Ngoài kiểm tra độ thẳng, góc 60°, còn chú ý kiểm tra dộ song song và khoảng cách 30 mm có cộng thêm lượng dư để gia công tinh cua hai cạnh đối xứng nhau.
6. Dùng giũa mịn để gia công tinh các các cạnh bảo đảm khoảng cách 30 mm và độ song song của các cạnh đôí xứng nhau.
7. Kiểm tra dấu tâm của chi tiết so với các cạnh của hình lục giác đều, sau đó kẹp phôi trên êtô, phía dưới đáy lót gỗ. Gá đặt êtô trên bàn máy khoan, khoan lỡ $\phi 14,5 \mathrm{~mm}$, dùng mũi khoan lớn hơn hoạ̣c mũi khoét để vát góc 120° ở hai phía đầu lỗ.
8. Dùng bộ ta rô tay (hai chiéćc) để gia công lổ ren theo thứ tư từ ta rô số 1 dến ta rô số 2 . Khi quay ta rô cần chú ýy dẫn huớng cho ta rô thằng góc với mặt gia công, sau khi quay ta rô vào $1-2$ vòng lại quay ngự̛̣ lại khoảng nửa vòng dể tránh kẹt phoi làm gãy ta rô.

Câu hỏi

1. Các dạng ren thường dùng? Phạm vi sử dụng của từng loại?
2. Các thông số cơ bản của ren?
3. Các hệ ren thường dùng trong chế tạo máy? Cách ghi các ký hiệu ren?
4. Các loại ta rô? Kết cáu của ta tô?
5. Các loại bàn ren? Phạm vi sử dụng của từng loại?
6. Cách xác định đuờng kính lỗ khoan trước khi cắt ren?
7. Các thao tác khi dùng ta rô, bàn ren để cắt ren?
8. Khi ta rô lổ ren cần chú ý những gì?
9. Cách kiểm tra ren sau khi gia công?

Chương 9

TÁN

9.1. KHÁl NIỆM

Tán là phương pháp dùng để ghêp hai hoạ̃c nhiều chi tiết lại với nhau bằng cách dùng đinh tán. Đinh tán là một chớt trụ có mũ, một đàu đưa qua lỗ giữa các chi tiết cần ghép rồi đùng búa và dụng cụ chồn đầu bên kia toè ra.

Tán thường dùng để ghép các phiến, tấm, lá và các loại vật liệu định hình (I, U, L...).

Tán được chia ra tán nguội, tán nóng và tán phối hợp.

- Tán nguội là dùng các đinh tán có đường kính đến 8 mm để tán, khi tán không cần nung nóng đinh tán. Trong trường hợp này lổ trước khi đưa đinh tán vào có dường kính lớn hơn $0,1-0,2 \mathrm{~mm}$ so với đường kính đinh tán.
- Tán nóng là đem đinh tán nung đến nhiệt độ xác định rồi đưa đinh tán qua lỗ để tán. Khi tán nóng, đường kính đinh tán phải nhỏ hơn lổ từ $0,5-1$ mm để có thể đưa đinh tán đã nung đỏ qua lổ dễ dàng.

Khi tán nóng, kim loại điền đầy vào lỗ cần tán tốt hơn, sau khi nguội sē tạo ra độ căng của mối ghép rất tốt.

- Tán phối hợp dùng cho các đinh tán dài, khi đó không cần nung toàn bộ đinh tán mà chỉ cần nung đoạn đẩu
cần tán.

Tán có thể thực hiện bằng tay hoạac bằng máy.

9. 2. CÁC DÁNG छINH TÁN VÀ

 MÓ́l GHÉP BÀNG ĐINH TÁN
1. Các dạng đinh tán

Đinh tán là một chốt tròn một đầu có mũ được làm từ các loại thép mềm, đôi khi được làm từ các vật liệu khác như đồng, nhôm.... Theo hình dạng đầu mũ đinh tán có thể chia thành các loại đinh tán chịu lực - kín khít (hình 9.1 a) gồm đinh tán đầu tròn 1 , đinh tán đầu chóp cụt 2 , đinh tán đầu bằng 3 , đinh tán đầu nửa chìm 4 .

Đinh tán chịu lực (hình 9.1 b) bao gồm đinh tán đầu tròn 1 , đinh tán đầu

Hình 9.1. Các loại đinh tán
a) Einh tán chịu lực - Kin khit;
b) Einh tán chịu lực;
c) Đinh tán đầu chìm dùng cho mối nối chịu lực và chịu lực -kin khit;
1- Đinh tán đầu tròn; 2- Đinh tán đầu chớp cụt; 3- Đinh tán đầu bằng; 4- Đinh tán đầu nưa chim.
nửa chìm 2 , đinh tán đâu chóp cụt 3 , đinh tán đầu chơp cụt nửa chìm 4.
Đinh tán chịu lực và chịu lực - kín khít (hình 9.1 c) dùng đinh tán đầu chìm.
Trong các loại đinh tán thường hay dùng loại đinh tán đẩu tròn và đinh tán đầu chìm, đinh tán đầu tròn có độ bền mối ghép cao hơn loại đầu chìm, vì thế hay được sử dụng, loại đinh tán đầu chìm chỉ dùng khi cần mối ghép tán chìm.

2. Các dạng mối ghép bằng đinh tán

Tuỳ theo yêu cầu sử dụng, các mối ghép không tháo được dùng đinh tán có thể chia ra các loại sau:

- Mối ghép chịu lực: là mói ghêp không tháo được bằng đinh tán khi chịu tác dụng của tải trọng. Đọ́ bền của mối ghép đạt được nhờ sử dụng một hoạc nhiều hàng đinh tán. Mối ghép này thường thấy trong các kết cấu như dầm cầu, khung cột, khung giàn...
- Mối ghép kín khít: là mối ghép bảo đảm độ kín khít, chống rò rỉ chất lỏng hoạ̣c chất khí. Mối ghép này thường thấy trong các thùng, bể chứa.
- Mối ghép chịu lực và kín khít: là mối ghép dùng khi cần bảo đảm độ kín và chịu lực. Ví dụ: nồi hơi, thùng, bể chịu áp lực lớn từ bên trong.

Khi ghêp hai tấm kim loại vào nhau bằng dinh tán thường dùng ba cách:

1. Đặt hai tấm kim loại chồng lên nhau rồi dừng đinh tán (hình 9.2a).
2. Đặt hai tấm kim loại sát nhau (đáu đầu nhau) và dùng một tấm nối để ghép bằng đinh tán qua tấm nối (hình 9.2 b).
3. Đật hai tấm kim loại sát nhau và dùng hai tấm nối (trên và dưới) và ghép bằng đinh tán qua hai tấm nối (hình 9.2 c).

Hinh 9.2. Các dạng ghép kim loại khi tán
a) Ghép hai tấm chồng lên nhau;
b) Ghép hai tà̛m đặt sát nhau, dùng một tám nối;
c) Ghép hai tấm đặt sát nhau, dùng hai tấm nới.

9.3. DỤNG CỤ VÀ GÁ LẮP DÙNG KHI TÁN

Khi tán cần dùng các loại dụng.cụ: búa nguội, khuôn đỡ mũ đinh tán, khuôn chụp để ép xiết các tấm kim loại trước khi tán, khuôn tán.

- Búa tay là búa nguội để tán có thể là búa tay, búa tạ, thường dùng búa đầu vuông, trọng lượng của búa chọn theo đường kính của định tán (bảng 9.1).

Bảng 9.1. Quan hệ giữa đường kính của đỉnh tán và trọng lượng của búa

Đường kính đinh tán (mm)	2	2,5	3	3,5	4	5	$6-8$
Trọng lương búa (gam)	$100-150$	$150-200$	$200-300$	$300-350$	$350-400$	$400-450$	$450-500$

- Khuón đỡ mũ đinh tán dùng để làm đe đỡ trong khi tán cho được chắc chặt. Khuôn đơ mũ đinh tán được chọn theo loại đinh tán và theo trọng lượng. Trọng lượng của khuôn đỡ phải bằng 3 -5 lần trọng lượng của búa để trong khi dưng búa đập đinh tán cho chồn, lún, thì khuôn đỡ khỏng bị bật ra khỏi mũ dinh tán.
- Khıôn chụp là cơ cấu dùng để xiết ép các tấm kim loại trước khi tán. Khuôn chụp được chế tạo như một đầu đột từ thép Y8 tôi cứng, đâu làm việc có lô, đường kính lô lớn hơn $0,2 \mathrm{~mm}$ so với đường kính dinh tán.
- Khuôn tán dùng để sửa cho mũ đinh sau khi bị chồn lún, để mũ đinh có hình dạng theo hình löm trong khuôn tán.

9.4. KȲ THUẬT TÁN

Chọn chiều dài đinh tán là công việc dầu tiên cần làm sao cho đủ lượng kim loại để tán thành mũ đinh và điền đầy lổ nối. Khi xác định chiều dài đinh tán, cần xét tới hình dáng của mũ đinh, khe hở giữa đinh và thành lô nối, lượng chồn lún ra ngoài khi tán.

Độ dài từ đầu mũ này tới đầu mũ kia của đinh tán không nên vượt quá

Hinh 9.3. Chọn chiểu dài đinh tán

5 lần đường kính của đinh, khí chiều dài đinh tán lớn hơn giá trị này nên dùng bu lông để thay thế cho đinh tán. Chiều dài phần nhố ra khỏi tấm kim loại của đinh tán phải đủ để chồn, tán thành đầu mũ hoàn chỉnh (hình 9.3).

Thông thường chiều dài này phải bằng $1,2-1,5$ lẩn đường kính đinh tán khi tán thành đẩu mũ tròn và từ $0,8-1,2$ lần đường kính đinh tán khi tán thành đầu mũ chìm.

Lô trước khi đưa đinh tán vào phải được khoan hoặc đột. Đường kính lỗ thường lớn hơn đường kính định tán từ $0,2-0,5 \mathrm{~mm}$. Lổ để tán mũ đầu chìm ở hai đầu cần khoan mở rộng để khi tán, đầu mũ đinh tán nằm lọt trong mặt phẳng của tấm kim loại.

Để quá trình tán có thể bắt đầu thì công việc đầu tiên là gia công lỗ trên các tấm kim loại cần tán (hình 9.4 a), nếu là đinh tán chìm thì khoan đầu lỗ chìm; sau đó đưa đinh tán vào trong lổ, dùng khuôn chụp để xiết, ép chặt các tấm kim loại với nhau (hình 9.4 b), dùng búa tán để chồn đầu đinh tán (hình 9.4 c) và dùng khuôn tán để định hình đầu mũ của đinh tán (hình 9.4 d).

Hinh 9.4. Quá trinh tán
a) Khoan lỡ; b) Chụp để xiết ép các tấm kim loại;
c) Tán đầu mũ bằng búa tay; d) Định hình đầu mũ đinh tán.

Trong khi thao tác cần chú ý không để cho búa đập vào mặt của tấm nối và trên mặt của các tấm kim loại cần ghép bằng đỉnh tán. Khi sửa chữa mũ
đinh tán khơng được để cho mặt đó xây sát và cạnh của khuôn chụp làm hỏng đầu mũ đinh tán.

Người thợ nguội thường thực hiẹ̣n công việc tán trên êtô hoặc trên bàn nguội tại chō làm việc của thợ nguội. Khi đó cần sá́p xếp các vật liệu, dụng cư mợt cách có trật tự. Khi tán đinh tán chìm có thể thao tác trên một đe phả̉ng thông thường, khi tán đinh tán đầu tròn và các loại khác thì dùng khuôn đỡ có đầu lõm như mũ đinh tán để sử dụng.

Khi tán, các đinh tán bố trí theo đường tán xếp thành một, hai hoạc nhiều hàng.

Khi đường tán thành một hàng, khoảng cách giữa các đinh tán bằng ba lần đường kính của đỉnh tán, còn khoảng cách từ tâm đinh tán đầu tiên tới cạnh bên của tấm kim loại bằng 1,5 lần đường kính đinh tán, nếu lỗ đưa đinh tán vào là lồ khoan, hoạ̃c bā̀ng 2,5 lần đường kính đinh tán, nếu lổ đó là lỗ đột.

Khi đường tán thành hai hàng thì khoảng cách giữa các đinh tán bằng bốn lần đ̛̛̉ờng kính của đinh tán, còn khoảng cách từ tâm đinh tán đầu tiên tới cạnh biên bằng 1,5 lẩn đường kính của đinh tán. Khoảng cách từ hàng đinh tán này tới hàng đinh tán kia bằng hai lần đường kính của đinh tán.

9.5. CHẤT LƯỢNG KHI TÂN VÀ CÁC QUY TẮC AN TOÀN KHI TÁN

Khi tán dơ nhiều nguyên nhân khác nhau có thể phát sinh ra phế phẩm (hình 9.5). Sau khi xác định nguyên nhận và biện pháp khắc phục (bảng 9.2), cần lấy dụng cụ (đục) đục đầu đinh tán bị hỏng và dùng đột để thúc đinh tán ra ngoài.

Bảng 9.2. Các nguyên nhân phát sinh ra phế phẩmı khi tán

Hînh thức phế phẩm	Nguyên nhân sinh ra phế phẩm
- Sau khi tán không chạt	- Khuôn chụp chưa ép chặt các tấm kim loại trưóc khil tán
- Đầu mũ đỉnh tán bị nhỏ hoặ không thẳng	- Phần đinh tán thò ra khỏi lỗ ngắn hoạ̣c dài quá
- Đẩu mũ đinh tán bị vẹt	- Khuôn chụp khi ép đả đạt không chính xác
- Hai đầu đinh tán bị lệch	- Lỗ khoan bị lệch
- Đẩu mũ đinh tán bị sứt mé	- Chất lượng kim loại của đinh tán khơng tốt

Hình 9.5. Các đạng phë́ phẳm sau khi tán
Trong khi thao tác với đinh tán cần chú ý các quy tắc an toàn sau:

1. Cán búa đùng để tán phải chêm vào búa chặt, chấc, nếu không nó có thể văng ra gây tai nạn lao động.
2. Đầu búa và các khuôn phải phẳng, không bị sứt, mẻ hoạ̃c $\mathrm{c} \delta$ vết nứt có thể vỡ ra khi thao tác.
3. Khuôn đỡ không nên ép thật chặt với đầu mũ đinh tán mà chỉ để khớp vào đầu mũ đinh.

Bài tập 1: Tán bằng đinh tán chìm một thước góc làm bằng thêp tấm đặt chồng lên nhau (hình 9:6 a):

Thứ tự công việc cần làm như sau:

1. Chuẩn bị chố làm việc, sửa nguội các tấm kim loại sẽ ghép thành thước, chuẩn bị đinh tán đường kính 6 mm .
2. Lây dáu các lỗ sẽ đùng đinh tán và dùng đục nhọn để núng dấu tâm các $1 \delta \mathbb{đ o ́}$.
3. Khoan lở đường kính $6,5 \mathrm{~mm}$ và khoan mở rộng đâu lơ để chứa mũ đinh tán chìm.
4. Xác định chiêu dài của đinh tán chìm bao gờm chiều dày của các tấm kim loại đ̛, chớ cấn nỡi và chiểu dài phân thò ra của đinh ở hai đấu (đấu thò ra của đinh tán ở mởi đâu lấy bằng $0,8-1,2$ đường kính của đinh tán). Như vậy theo hình vẻ ta có chiéu dài đinh tán là: $5+5+2 \times 1,2 \times 6=24,4 \mathrm{~mm}$, láy thành số chẵn Ià 24.5 mm .
5. Đo và cắt đinh tán dài $24,5 \mathrm{~mm}$.
6. Đem các chi tiết cần ghép chồng lên nhau và đặt trên mợt đe phẩng (thay cho khuôn đỡ).
7. Đưa đinh tán vào trong lō.
8. Dùng búa tán một đâu của đinh tán.
9. Lạt thước góc lại và tán đầu đinh tán phía bên kia.

Bài tập 2: Dùng tấm sắt góc để nối một thước góc bà̀ng thêp tấm (hình 9.6 b), dùng đinh tán đầu tròn.

Thú tự công việc cần làm nhur saut:

1. Chuẩn bị chỗ làm việc, sửa nguội tấm phôi đã cắt để ghép thành thước, chuẩn bị đinh tán đầu tròn.
2. Lấy dấu các lở sẽ đưa đinh tán vào và lấy đục nhọn núng dấu tâm.
3. Khoan các lổ đã lấy dấu trên thanh sắt làm thước.
4. Đật cáe thanh sắt làm thước lên trên tấm sắt góc, dùng bàn kẹp cố định chúng lại.
5. Khoan lổ trên tấm sắt góc theo lỗ đã khoan trên thanh sất làm thước.
6. Đưa đinh tán vào các lō, kiểm tra chiều dài thò ra ngoài của đinh tán khoảng $1,25-1,5$ đường kính đinh tán.
7. Dùng búa và các dụng cụ khác để ép các tấm kim loại và tán các đầu mũ đinh tán.
8. Dùng khuôn chụp để sửa các đâu đinh tán tròn.
9. Kiểm tra chất lượng sau khi tán: các tấm kim loại được ép chặt, đâu
đinh tán tròn, không bị lệch, trên mặt của chi tiết ở chỗ tán không bị sây sát và mū đinh không bị sứt mẻ là mối ghép bảo đảm chất lượng.

Cáu,hỏi

1. Tán là gì? Có máy loại tán?
2. Các dạng đinh tán.
3. Các dạng mói ghép bằng đinh tán? Phạm vi sử dụng của từng loại?
4. Các dạng ghép tấm kim loại vào nhau khi tán?
5. Các loại dụng cụ dùng khi tán?
6. Trình tự các thao tác khi tán?
7. Cách xác định chiéu dài đinh tán?
8. Các phế phẩm xảy ra khi tán và biện pháp khắc phục?
9. Các quy tấc an toàn lao động khi tán?

Chưong 10

HÀN, MA THIÉC KIM LOẠI

10.1. MA THIÉC

Quá trình tráng mọt lớp mòng thiéc trên bé mặt sản phảm dược gọi là ma thiéc. Mạ thiéc tren bé mạt kim loại mục đích để ngản ngừa sản phấm bị han gỉ trong quá trình sử dụng.

Khi mạ thiéćc có thé dùng thiếc nguyên chất hoạ̃c pha chì (gồm năm phần thiếc và ba phân chì) có giá thành rè hơn, nhưng không dùng hợ chất này để mạ các sản phảm đựng thực phẩm vì có khả năng gay đọc. Thơng thường đé chớng gì người ta dùng hợp kim thiếc - chì, hoặc hợp kim thiếc - chì - kēm (ví dụ: thiếc 18%, chì 82% hoặc thiéćc 71%, chì 23%, kẽm 6% hoạc thié́c 45%, chì 30%, kẽm 25% để mạ). Trong mọt sớ trương họp ngoài thiéć, chì ra còn kết hợp thêm ång-ti-moan, ví dụ: dùng hợ kim này đẻ̉ tráng trong lòng δ đỡ mộ lớp hợp kim mỏng có tác dụng làm giảm hiện tượng mài mòn của ổ đỡ trong quá trình sử dụng.

Mạ thiếc có hai phương pháp: mạ xoa và mạ nhúng trong thiếc nóng chảy, trong đó phương pháp mạ xoa là phương pháp thuờng dùng cho đa só các sản phẩm.

Để bảo đảm chất lượng khi mạ thiéćc, quá trình mạ thiếc thường gồm hai nguyên công chính: làm sạch bề mặt trước khi ma, quá trình ma.

1. Làm sạch bể mặt trước khi mạ là nguyên cơng quyết định tới chất lượng mạ. Công tác chuẩn bị bề mặt làm dược càng tớt thì khi mạ thiếc sẽ càng dều, lớp thiếc bám trên bề mặt sẽ̉ bền hơn. Bề mặt cần mạ dược làm vệ sinh, làm sạch các vết bẩn, vết gỉ, dâu mỡ.. bằng phương pháp cơ học hoạac phương pháp hoá học. Phương pháp cơ học là dùng bàn chải, giūa, dao cạo, giá́y ráp... dể làm sạch. Phương pháp hoá học là dùng phương pháp ãn mòn bằng axit clohydric hoặc axit sunfuric pha loãng. Những vạ̣t làm từ thép, đồng thau thì thường dùng dung dịch nước và $\mathrm{H}_{2} \mathrm{SO}_{4}$ vớ tỷ lẹ̣ axit $20-30 \%$ để ngàm trong khoảng $20-30$ phút. Dung dịch này dựng trong chạu thuỳ tinh hoạạc chạu kim loại tráng men. Bè̀ mặt sau khi làm sạch được rửa bằng nước sạch sau đó dùng cát mịn, âm đấnh sạch mặt cân mạ rồi rửa trong nước nóng từ $70-80^{\circ}$ và dùng giė sạch lau kho. Để ngản ngừa hiện tượng ôxi hoá bề mặt dùng dung dịch clorua kẽm bôi lên bề mặt hoạ̀c nhúng vào chặu clorua kêm rồi láy kìm gắp ra và bên trên rác một lớp bôt amoni clorua $\left(\mathrm{NH}_{4} \mathrm{Cl}\right)$. Amôni clorua là loại thuốc mạ hỗ trợ trong việc tấy sạch những chất bẩn, dầu mỡ, gì... bám trên mặt kim loại.

2. Quá trình mạ

Mạ theo phương pháp nhing: đầu tien đưa chi tiết cần mạ vào bé chứa dung dịch clorua kêm, sau đó dùng kìm nhǻc chi tiết ra, từ từ nhúng vào bé chứa thiếc nơng chảy khoảng 2-3 phút rời láy vạt ra, lấc mạnh cho rơi ra lơp thiéc thừa. Khi sản phấm nguọi, đem rưa sạch trong nước hoậc dung dịch nước voi dé loai bó lượng clorua kẽm còn dứ.

Mạ theo phương pháp xoa: Sản phẩm trước khi mạ dược làm sạch, sau đó bôi lên bế mặt một lớp clorua kẽm để ngăn ngừa hiện tượng óxi hoá và rấc lên trên một lớp bột clorua amôni. Đem sản phẩm nung nơng dến nhiệt độ $225-250^{\circ}$, khi đó rắc thiếc dưới dạng bột lên bế mặt, thiếc sẽ nóng chảy, lúc đó rấc bột clorua amôni lên bề mặt mạ đờng thời dùng giẻ bằng sợi gai thô lau, xoa nhanh trên bề mặt mạ để làm cho thiếc tráng đểu một lớp mỏng trên bề mặt.

10.2. HÀN THIÉC

1. Khái niệm

Hàn thiếc là phương pháp dùng để nối các chi tiết bằng kim loại với nhau bẳng cách cho thiếc nóng chảy điền vào khe hở giữa hai mạat cần hàn, dể khi thiếc nguội, nó sẽ bám chặt vào mặt kim loại tạo nên độ kín khít và độ bền của mối hàn.

Khi hàn thiếc, nhiệt độ nóng chảy của thiếc thấp hơn nhiệt độ nóng chảy của kim loại cần hàn nên trong quá trình hàn thiếc nó không ảnh hưởng đến lớp kim loại chổ hàn.

Hàn thiếc dùng hàn các chi tiết làm từ thép, đồng và hợp kim dồng. Hàn nhôm và hợp kim nhôm thường khó thực hiện vì bể mặt nhôm sau khi làm sạch thương bị ôxi hoá trong không khí tạo nên một lớp mỏng ôxit trên bè̀ mặt rất khó hàn. Khi hàn nhôm, bể mặt cần hàn sau khi làm sạch được xoa một lớp thuốc hàn cùng chất trợ dung, khị nung gần đến nhiệ̣ độ hàn, chất trợ dung nóng chảy thành chất hoạt tính cản trở hiện tượng ôxi hoá bề mặt, tao thuận lợi cho quá trình hàn.

Hăn thiếc chia thành hai loại: dùng chất hàn mềm hoạ̣c chất hàn cứng tuỳ theo nhiẹt độ nơng chảy của từng loại.

- Chất hàn mềm (thiếc mềm) là hợp kim thiếc -chì, có nhiệt dộ nóng chảy $183-300^{\circ} \mathrm{C}$, chất hàn mềm dùng để hàn các chi tiết có độ bền mối hàn không yêu cầu cao. Bảng 10.1 cho thành phần của một số loại chả́t hàn mềm hay dùng.
- Chắt hàn cứng là hợp kim có đồng, kẽm, có nhiệt độ nóng chảy lớn hơn $500^{\circ} \mathrm{C}$ dùng để hàn các đường hàn có độ bền mới hàn cao. Bảng 10.2 cho
thành phần của một số loại chất hàn cứng gồm đồng, kẽm, có loại còn có thêm bạc.

Bảng 10.1. Thành phần của chất hàn mềm

Thành phán thiçac hàn(\%)						Phạm vi sử dung
Thléc	Angtimoan	Chl	Các thành phán khác tớ đo nên có			
			Đơng	Bismut	Arsen	
89-90	0.1-0.15		0.08			- Dưng cut trong gla oinh.
39-41	1,5-2		0.1	0,1	0.05	- Các chi tiết máy điên,
		Cón				máy đo, các sản phẩm bâng aờng.
	1.5-2	$\begin{aligned} & \text { lạ\| } \\ & \text { là } \end{aligned}$				- Các sản phấm bằng
29-30	1,5-2	la chl	0,15			thép, kêm, đồng, các ố truc...
17-18	$2,0-2,5$		0,15			- Dùng cho các móí hản có độ bến tương đối thấp.
3-4	5-6		0,15			- Dùng cho các móí hàn có độ bền thắp.

Bảng 10.2. Thành phần của chất hàn cứng

Số thứ tụ	Tên thiéc hàn	Thành phán (\%)							Nhiệt đọ nóng chảy (đọ)
		Đổng	Bạc	Kēm	Các loại khác				
					Angtimoan	Chi	Thiéc	Sằt	
$\begin{aligned} & 1 \\ & 2 \end{aligned}$	Chát hàn đờng kēm	$\begin{aligned} & 40-45 \\ & 45-49 \end{aligned}$	-	$\begin{gathered} \text { Cón } \\ \text { lại } \\ \text { là } \\ \text { kẻm } \end{gathered}$	0,1	0,5	1,5	0,5	$\begin{aligned} & 849 \\ & 860 \end{aligned}$
3 4 5	$\begin{aligned} & \text { Chát } \\ & \text { hàn } \\ & \text { có } \\ & \text { bạc } \end{aligned}$	52-54	$9,7-10,3$ $24,7-25,3$ $69,5-70,5$	--	-	0,5 0,5 0,3	--	--	830 765 780

Trong bảng 10.2 , loại số 1,2 chủ yếu để hàn đồng thau, đồng thanh; loại số 2 còn đùng để hàn óng sắt; loại số 3 dùng dể hàn ống nối dẫn dầu, xăng...; loại số 4 dùng dể hàn cưa và những bộ phận cần phải bóng, sáng...; loại số 5 dưng để hàn những bộ phận máy điện bảo đảm tính dả̉n điện.

Khi dùng chất hàn mềm để hàn, bề mặt cần hàn được làm sạch, đạt sát nhau, láy thuớc hàn bôi lên bề mật, sau đó dùng mỏ hàn bầng đồng đã nung nóng cùng chá̛t hàn $\mathrm{c} Q$ sát vào chō kim loại cấn hàn làm chất hàn nóng chảy ra bám dính lên chở hàn.

Khi düng chất hàn cứng dể hàn, sau khi làm sạch bé̉ mạt cần hàn, có dịnh hai bê mật cho đúng vị trí cân hàn, boii thuơc hàn, đạt chất hàn lên chở hàn rởi tăng nhiẹt (bẳng đèn xì, đâuu hàn hơi ôxy - axetylen...) cho đến khì chất hàn chảy ra, điên kín vào chठ̄ cân hàn. Sau khi hàn xong dế chở hàn đó nguội dấn.

2. Dụng cụ dùng khí hàn

- Mỏ hàn: Mỏ hàn là dụng cụ chính dùng để hàn, nơ dùng dể nung nóng chỗ hàn và làm cho chất hàn nóng chảy bám vào chỡ cần hàn.

Tuỳ theo cách cấp nhiệt nung nóng mỏ hàn có thể chia thành các loại: mỏ hàn thường (nung mỏ hàn trong lò), mỏ hàn diện, mỏ hàn nung bằng xāng, mỏ hàn hơi.

+ Mỏ hàn thường (hình 10.1 a) được làm bằng đồng, có hình khối, một đầu vát cạnh, phần chuôi bà̀ng thép có cán gổ để cách nhiệt. Mỏ hàn bằng đồng thu và giữ nhiệt tốt. Nung nóng đầu mỏ hàn trong lồ than, ngọn lửa cho đến khi đạt nhiệt độ cần hàn.Trong khi hàn, đầu mỏ hàn nguội dần nên nhiệt độ khi hàn không đều, do đó tuỳ theo bề mặt cần hàn, kích thước mối hàn để chọn cỡ to, nhỏ của đẩu mỏ hàn cho thích hợp để có thể giữ nhiệt, bảo đảm nhiệt độ khi hàn.
+ Mỏ hàn điện là mỏ hàn được gia nhiệt bằng diện, rất thích hợp khi hàn với chất hàn mè̀m, bảo đảm nhiệt độ hàn đều (khoảng $400^{\circ} \mathrm{C}$), chổ hàn sạch. Nẳng suất của mỏ hàn điện cao hơn nhiều so với loại mỏ hàn thường, ngoài ra còn cải thiện điều kiện lao động của người thợ.

Mỏ hàn điện (hình 10.1 b) gồm đầu mỏ hàn 1 , xung quanh có quấn dây may so (điện trở) 2 nối với nguồn điện qua dây dẫn 6 và bọc bằng lớp cách điện 3 trong thân 4 được lắp với cán gổ 5 .

+ Mỏ hàn hơoi (hình 10.1 c) là mỏ hàn dùng hỗn hợp khí ôxy- axêtylen, hốn hợp khí khi cháy sẽ nung nóng chố hàn và chất hàn, loại này thường dùng để hàn với chất hàn cứng.
- Đèn xì (đèn khò) là dụng cụ đùng để nung nóng chổ cần hàn và làm
nóng chảy chất hàn. Nhiệt độ của đèn xì có thể tới $1100^{\circ} \mathrm{C}$. Đèn xl có nhiều loại tuỳ theo dung tích bình chứa nhiên liẹu và loại nhiên liẹu (dẩu hoả, xăng hoặc cớn).

Hinh 10.1. Các loại mó hàn
a) Mỏ hàn thường;
b, c) Mỏ hàn điện:
1- Đầu mỏ hàn; 2-Dây điện trơ; 3-Lóp cách điện;
4-Thán; 5 - Cán gỗ; 6- Dây dẫn;
d) Mỏ hàn hớ.

Cấu tạo dèn xì (hình 10.2) gồṁ bình chứa nhiên liệu 1 , tay cầm 6 , nút 7 , bơm 5 dùng để nạp khí vào bình, đầu van 4 để điều chỉnh lượng nhiên liệu. Nhiên liệu phun ra qua ống 3, trên ống có các lổ để cung cấp không khí (ôxy) cho quá trình đốt. Dưới ống có cốc 2 để chứa nhiên liệu cần cho quá trình đốt của đèn xì.

3. Kỹ thuật hàn

- Hàn băng chất hàn mềm

Hînh 10.2. Đèn xì
1- Binh chứa nhiên liệu; 2-Cốc; 3- Óng phun; 4-Van; 5- Bomi; 6-Tay cầm; 7-Nút.

Quá trình hàn bằng chất hàn mềm̀ bao gồm: chuẩn bị chi tiết trước khi hàn, hàn và gia công chi tiết sau khi hàn.

Để bảo đảm chất lượng mối hàn, bề mặt chi tiết trước khi hàn cần phải làm sạch các vết bẩn, gỉ, dẩu mỡ bám trên lớp bề mặt. Làm sạch bề mặt bằng giũa, đá mài, bàn chải sắt... rồi dùng giẻ khô lau sạch.

Hàn bằng chất hàn mềm được chia thành hai loại: hàn dùng axit và không dùng axit. Khi hàn dùng axit thì thuốc hàn là clorua kēm hoặc axit clohydric (HCl). Clorua kēm là kẽm hoà tan trong axit clohydric, mối đơn vị trọng lượng của kẽm kết hợp với năm đơn vị trọng lượng của axit clohydric cùng với lượng nước tương đương để làm loãng. Trước hết phải pha dung dịch axit, bỏ kẽm vào trong dung dịch, sau khi kēm đã hoà tan trong axit thì lấy bàn chải để bôi clorua kẽm lên chổ cần hàn. Khi hàn không có axit thì dùng thuốc hàn không có axit như nhựa thông, stearin... Thuốc hàn được bôi lên bề mặt sau khi đã làm sạch và chuẩn bị bề mặt chi tiết.

Người thợ hàn nung nóng mỏ hàn trong lò hoạa bằng ngọn lửa của đèn xì. Nung nóng trước hết phần thân của mỏ hàn (hình 10.3 a) đến nhiệt độ cần thiết. Nếu nung quá nhiệt sẽ dẫn đến ôxi hoá bề mặt và làm thiếc thừa bám trên đầu mỏ hàn cháy. Trong trường hợp đó, phải đem mỏ hàn ra ngoài cho nguội, sau đó kẹp trên êtô, dùng giũa làm sạch hết vết cháy trên bề mặt mỏ hàn rồi mới đưa vào nung nóng tiếp tục (hình 10.3 b). Khi nung đạt tới nhiệt
độ cần thiết, lấy mỏ hàn ra, đưa đầu mỏ hàn vào trong clorua kẽm (thuớc hàn) để làm sạch bề mặt bị ôxi hóa (hình 10.3 c) và lấy khoảng $1-2$ giọt thiếc (hình 10.3 d), rồi đưa đi đưa lại đầu mỏ hàn trên miếng clorua amôni (hình 10.3 d) đến khi nào trên mỏ hàn bám và dàn thành mợt lớp thiếc hàn đều là được. Sau đó đạt mỏ hàn vào chổ cẩn hàn, để một lát cho bề mặt chổ đó nońng lên và đưa thiếc hàn vào chổ cần hàn, dịch chuyển chậm và đều mỏ hàn, lúc đó thiếc hàn sẽ chảy ra và điền kín khe hở giữa các bề mặt tạo thành đường hàn (hình 10.3 e). Nếu như thiếc hàn chưa chảy dều trên suốt đường hàn thì phải bôi thuốc hàn thêm một lần nữa vào những chỗ khuyết và hàn lại.

Hinh 10.3. Hàn bằng chất hàn mềm
a) Nung mó hàn;
b) Làm sạch và sửa lại đầu mỏ hàn quà nhiệt;
c) Làm sạch mỏ hàn khi nhúng vào clorua kēm;
d) Dùng mỏ hàn để lấy thiếc;
đ) Bưa mỏ hàn vào miếng clorua amôni;
e) Chuyẻ̉n động của mỏ hàn khi hàn.

Khi hàn những thùng đựng xăng, dầu, trước hết phải đổ xăng, dầu ra, rửa sạch thùng, trước khi hàn phải đổ đầy nước vào thùng, cho tràn miệng thùng một thời gian nhất định để xăng, dầu còn dư và hơi xãng sẽ bị đẩy ra khỏi thùng, tránh bị cháy nổ khi nung nóng lúc hàn.

Sau khi hàn xong, dợi khi vật hàn đã nguội, tiến hành loại bỏ các vảy hàn thừa trên dường hàn, sau đó rửa sạch đường hàn rồi đem đi sấy khô, cūng có thể dùng khí nén để thổi cho khô.

- Hàn bằng chất hàn cíng:

Chất hàn cứng sử dụng khi mói hàn cần bảo đảm độ bền và chịu nhiệt. Trước khi hàn, bề mặt cần hàṇ được làm sạch các vết bẩn, gỉ, dầu mỡ (hình 10.4 a), sau đó bôi thuốc hàn (hàn the) lên bề mặt chỗ cần hàn (hình 10.4 b), đạat chất hàn (một miếng đồng lá) vào chổ nối, dùng tấm lót và day thép cố định hai chi tiết đúng vị trí cần hàn (hình 10.4 c) và bôi thêm một lớp thuốc hàn nữa lên chỗ hàn.

Dùng đèn xì hoạc đầu hàn hơi (ôxi - axétylen) để gia nhiệt cho vị trí cần hàn (hình 10.4 d). Khi tāng nhiệt, đầu tiên thuốc hàn (hàn the) nóng chảy ra

sau đó chất hàn cứng mới chảy và bám đều trên bề mặt cần hàn. Khi đó tắt lửa đầu hàn, để cho chi tiết nguội dần trong không khí và khi nhiệt độ còn khoảng $80-100^{\circ} \mathrm{C}$ mới nhúng vào nước cho nguội hẩn. Làm nguội như vậy sẽ nâng cao độ bền mới ghẹ́p và giảm bớt hiện tượng tạo xỉ trên bể mặt hàn. Cuối cùng làm sạch bề mặt và loại bỏ các vẩy hàn thừa trên bề mặt.

10.3. QUY ĐỊNH AN TOÀN KỸ THUẬT KHI MẠ, HÀN THIÉC

Khi thao tác hàn, mạ thiếc cần bảo dảm các quy định về an toàn lao động và quy tắc vệ \sinh lao động.

Khi dùng axit để tẩy rửa bề mặt hàn thì phải dùng phểu, ống hứt. Axit phải đựng trong bình thuỷ tỉnh, có nút đậy, đặt xa những nơi có thể dễ bốc cháy và không bị va chạm gây sứt, vỡ.

Khi vận chuyển bình đựng axit cẩn dùng sọt bằng tre bọc bên ngoài và lót rơm rạ xung quanh bình chứa axit.

Khi mạ thiếc hoặc hàn thiếc, không dược để gần những vật liệu dễ bốc lửa và dễ cháy (khoảng cách an toàn với những vật liệu này là 5 mét). Người thợ khi thao tác phải đeo kính che mặt đề phòng chất hàn nơng chảy, bắn ra gây bỏng.

Khi dùng đèn xì, chỉ rót nhiến liệu vào khi đèn đã nguội, không bơm nhiều hơi khi đèn còn nóng. Sau khi làm việc cần tháo hết không khí trong đèn ra.

Khi dùng hơi hàn (ôxy - axêtylen) cần điều chỉnh hōn hợp khí hàn đúng quy định để cho ngọn lửa hài? phù̀ hợp.

Khi dùng mỏ hàn điện cần bảo đảm mỏ hàn được cách điện tốt. Người thọ̣ hàn phải đi giày cao su hoặc đứng trên tấm đệm cao su, khi hàn không nên để mỏ hàn quá nóng.

Câu hổi

1. Mạ thiếc là gì? Khi nào cần mạ thiếc?
2. Tại sao trước khi mạ phải làm sạch bề mặt và làm sạch bằng phương pháp gì?
3. Có bao nhiêu phương pháp mạ? nội dung của từng phương pháp?
4. Thế nào là hàn thiếc? có những loại chất hàn gì và dùng khi nào?
5. Hãy nêu các loại mỏ hàn và phạm vi sử dụng của từng loại?
6. Trình tự công việc cần làm khi hàn bằng chất hàn mềm?
7. Trình tự công việc cần làm khi hàn bằng chất hàn cứng?
8. Hãy nêu nhũ̃g quy định về an toàn lao động và quy tắc về vệ sinh lao động.

Chương 11

CAO

11.1. KHÁl NIỆM

Cạo là phương pháp gia công tinh bề mặt kìm loại dùng dụng cụ là dao cạo dể bóc đi một lớp kim loại rất mỏng làm cho bề mặt đạt độ chính xác và độ nhẩn bóng bế mặt cao.

Cạo dùng để gia công các mặt phẳng, mặt dịnh hình như cạo bề mạat dân hướng, sống trượt của máy công cự, cạo bề mặt của các dụng cụ dùng để kiểm tra, đo lường, cạo bề mặt dường cong trên gối đỡ... Bể mạat phẳng sau khi cạo không những đạt dược độ phả̉ng cao mà trên bề mặt đã cạo có thể giữ được lớp dầu bôi trơn, giảm được hiện tượng ān mòn khi hai bề mặt tiếp xúc của hai chi tiết có chuyển dộng tương đối với nhau.

Bề mặt gia công bà̀ng phương pháp cạo có thể đạt độ chính xác từ 0,01 $-0,005 \mathrm{~mm}$, cạo bóc đi một lớp kim loại rất móng $0,002-0,005 \mathrm{~mm}$, lượng dư để lại cho cạo thường nhỏ, nó phụ thuộc vào kích thước chiều dài, rộng của măt phẳng (bảng 11.1) hoặc đường kính và chiều dài của bề mặt trụ cẩn cạo (bảng 11.2). Bề mặt trước khi cạo thường dược gia công nguội hoặc dùng các phương pháp gia công cắt gọt khác (phay, bào, tiẹn...).
Bảng 11.1. Lượng dư cạo cho theo kích thước chiều dài, chiều rộng của mặt phẳng

Chiều rộng mặt phẳng (mm)	Lượng dư đế cạo (mm) cho theo chiều dài mặt phẳng cán cạo (mm)				
	Đến 500	$500-1000$	$1000-2000$	$2000-4000$	$4000-6000$
Đến 100	0,1	0,15	0,20	0,25	0,30
$100-500$	0,15	0,20	0,25	0,30	0,40
$500-1000$	0.18	0,25	0,35	0,35	0,50

Bảng 11.2 Lượng dư cạo cho theo kích thước chiều dài và đường kính lỗ

Dường kính lỗ (mm)	Lương dư để cạo (mm) cho theo chiều dài lō̃ (mm)		
	Đến 100	$100-200$	$200-300$
	0,03	0,05	0,1
$80-180$	0,05	0,10	0,15
$180-360$	0,10	0,15	0,20

11.2. DỤNG CỤ DÜNG KHI CẠO

Dao cạo là dụng cụ thường dùng khi cạo. Dao cạo được chế tạo từ thép cacbon dụng cụ (Y10, Y12), phần lưởi cắt đầu dao cạo được tồ đạt độ cứng HRC 60-65.

Hînh 11.1. Các loại dao cạo
a) Dao cạo mạt phả̉ng;
b) Dao cạo lữ̛i cắt đầu cong;
c) Dao cạo hai đẩu có lữ̛i cắt;
d) Dao cạo ba cạnh;
e) Dao cạo ouinh hinh;
g) Dao cạo tháo, lắp đượ;
h) Dao cạo gắn lưãi cắt bằng hợp kim cứng;
i) Dao cạo vạn năng.

Dao cạo theo hình dáng bề mặt làm việc dược chia ra nhiều loại: mặt phẳng, ba cạnh, lòng mo, định hình... (hình 11.1). Theo số lưỡi cát chia ra dao cạo có lưỡi cắt một đầu và dao cạo có lưỡi cắt hai đầu; loại có luỡi cắt một đầu, phần chuôi có tay nắm bằng gỗ như giũa (hình $11.1 \mathrm{a}, \mathrm{b}$), còn loại hai đầu đều có lưỡi cắt thường khōng có tay nắm (hình 11.1 c).

Dao cạo mặt phẳng loại một hoạc hai đầu có lưỡi cắt được chế tạo từ phôi thép tấm dụng cụ hoạc từ giũa đã cũ, mòn. Dao cạo mặt phẳng (hình 11.1a) dùng để cạo mặt phẳng, dao cạo lưỡi cắt đầu cong (hình 11.1 b) dùng để cạo các góc nhọn hoặc cạo các kim loại mềm như nhôm, kẽm, bacbit... Dao cạo hai đầu có lưỡi cắt (hình 11.1 c) được chế tạo từ phôi thép tròn, lưỡi cắt có ở cả hai đầu.

Dao cạo mặt phẳng một đầu có lưỡi cắt thường có chiều dài 100 - 250 mm , loại hai đầu có lưỡi cắt có chiều dài $350-400 \mathrm{~mm}$, chiều rộng lưỡi cắt: $20-30 \mathrm{~mm}$ khi cạo thô, $16-20 \mathrm{~mm}$ khi cạo tinh và $5-10 \mathrm{~mm}$ khi cạo rất tinh; chiểu dày đầu lưỡi cắt từ $1-3,5 \mathrm{~mm}$, góc mài sắc khi cạo thô từ $60-$ 75°, khi cạo tinh là 90°.

Dao cạo ba cạnh (hình 11.1 d) dùng để cạo bề mạat trụ cung cong, được chia ra hai loại thả̉ng và cong tuỳ theo hình dạng lưới cắt ở đầu dao, chiểu dài dao cạo từ $75-100 \mathrm{~mm}$.

Dao cạo định hình (hình 11.1 e) dùng để cạo các rãnh, các bề mặt định hình. Hình dạng lưỡi cất tuỳ thuộc vào hình dạng bề mặt cần gia công. Dao được chế tạo từ thép tấm dày $1-2 \mathrm{~mm}$, bể mặt đầu lưỡi cắt được mài sắc theo hình dạng bề mặt gia công.

Ngoài ra dao cạo còn được chế tạo dưới dạng lắp ghẹ́p (hình 11.1 g) có thể tháo lắp, thay đổi các lưỡi dao khác nhau, kẹp chặt dao trên thân bằng vít.

Hình 11.1 h là dao cạo lắp mảnh hợp kim cứng 1 , kẹp chặt trên thân 2 bằng các vít 4 .

Hình 11.1 i là dao cạo vạn năng bao gồm thân 3 , tấm kẹp dao 2 , tay nắm 5 , vít kẹp 4 , mảnh lưỡi cắt 1 có thể thay thế, thường được chế tạo từ thép gió hoặc hợp kim cứng. Mảnh lưỡi cắt được gá dặt trong tấm kẹp dao và kẹp chặt bằng ren vít khi quay tay nắm vào theo chiĉ̀u kim đồng hồ.

Măi sác và mài bóng dao cạo: Trong quá trình làm việc khi dao cạo cùn, cần phải tiến hành mài sắc. Mài sắc trên máy mài dùng đá có độ hạt nhỏ hơn 60 và có độ cứng trung bình, dao cạo từ hợp kim cứng dược mài trên đá mài cacbit silic xanh.

Khi mài sắc, trước hết mài mặt bên (hình 11.2 b), sau đó mài mặt đầu (hình 11.2 a). Khi mài sŭ́c, để dao cạo vuông góc với cạnh của đá, dao tỳ vào đá mài vừa phải và thường xuyên được làm nguội (bằng nước) để lưỡi dao không bị giảm độ cứng do quá nhiệt.

Hình 11.2. Mài sắc dao cạo
a) Mài sắc mặt đầu; b) Mài sâc mặt bên; c) Mài sấc dao cạo ba cạnh;
d) Mài bóng Iưỡi cắt mặt đầu; đ) Mài bóng mặt bên.

Dao cạo ba cạnh được mài như trong sơ đồ hình 11.2 c .
Sau khi mài sắc, dể loại bỏ các ba via và nâng cao độ nhẳn bóng bề mặt, lưỡi cắt của dao được mài bóng trên các thanh đá mịn hoạ̣c trên phiến gang phẳng có bối một lớp bột mài hạt nhỏ trộn với dầu máy. Khi mài bóng, đặt dao trên thanh đá (hình 11.2 d) và đẩy dao đi lại để tạo độ bóng của cạnh lưỡi cắt, sau đó đẩy dao dọc theo cạnh cắt (hình 11.2 đ).

Bảng 11.3 cho giá trị các góc của lưỡi cắt dao cạo.

Bảng 11.3. Các góc mài của luỡi cắt dao cạo (độ)
(Giá trị cho ở trên đường vạch dùng cho dao cạo phẩng và dao cạo bán nguyệr, giá trị cho ở dưới đường vạch dùng cho dao cạo ba cạnh)

Góc	Giáa trị các góc mài sấc cho theo vật liệu gia công		
	Thép	Gang, đông thanh	Nhôm, dong thau
Góc mài sắc β	$\begin{aligned} & 75-90 \\ & 65-75 \end{aligned}$	$\begin{gathered} \frac{90-100}{75-85} \end{gathered}$	$\frac{35-40}{35-40}$
Góc gá đọ̆t α	$\begin{aligned} & 15-25 \\ & 15-25 \end{aligned}$		$\frac{20-30}{20-30}$
Góc cât δ	$\begin{aligned} & \frac{90-115}{80-100} \end{aligned}$	$\frac{105-125}{90-110}$	$\frac{55-70}{55-70}$

Dụng cụ kiểm tra: kiểm tra độ phẳng và độ nhẫn bóng bề mặt sau khi cạo bằng bàn phẳng và thước kiểm. Các mặt phẳng lớn sau khi cạo được kiểm tra bằng vết sơn thông qua bàn kiểm phẳng; mặt phăng hẹp, dài được kiểm tra bằng thước kiểm, gớc cạnh sau khi cạo được kiểm tra bầng thước goóc, bề mặt lỗ trụ được kiểm tra bằng trục kiểm.

11.3. CƠ KHÍ HOA CÔNG VIẸC CẠO

Để nâng cao năng suất lao động khi cạo, thường sử dụng các loại máy và đồ gá chuyên dùng để cạo hoạac có thể thay thế cạo bằng các nguyên công gia công cơ khí khác. Khi gia công các mặt phẳng lớn làm từ gang, cạo mặt phả̉ng có thể thay thế bằng phương pháp bào tinh mỏng dùng dao bào rộng bản hoặc mài, nghiền mặt phẳng vẫn bảo đảm chất lượng gia công nhưng cho năng suất cao.

Hinh 11.3. Gá lắp coo khí hoá coong việc cạo
a) Hinh dang chung:

1- Động cơ điện; 2-Hộp giảm tốc; 3- Đầu dụng cụ̀; 4-Dao cạo;
b) Đău dụng cụ:

1- Trục mểm; 2,3-Cặp bánh răng àn khớp côn;
4-Thanh trự̛̣; 5-Dao cạo; 6-Chớt quay.

Ngoài ra, cơ khí hoá công việc cạo còn được thực hiện bằng máy và gá lắp chuyên dùng. Hinh 11.3a là một máy dùng cạo bề mặt, máy bao gồm động cơ điện 1 , hộp giảm tốc 2 nối qua trục mềm tới đầu dụng cụ 3 cung cấp cho dao cạo 4 chuyển động tịnh tiến đi lại.

Các kết cấu của phương pháp cạo bằng máy dựa trên nguyên lý chuyển đổi chuyển động quay của trục nối từ động cơ điện thành chuyển động tịnh
tiến đi lại của dao cạo. Hình 11.3 b là mợt đầu dụng cụ chuyên dùng để thực hiện viẹ̣c chuyển đôi đól. Đâuu dụng cụ gồm thanh trươt 4 , trên đó kẹp dao cạo 5 , chuyèn dọng quay từ trục mềm qua cặp bánh răng ăn khợ 2,3 và chớt quay 6 để chuyênn đới chuyển đọng quay thành chuyến đọng tịnh tiên đi lại của dáu dao cạo.

Để nâng cao nång suât khi gia công trong các nhà máy cơ khí thương dùng các loại dao cạo kiểu khí nén, diện - cơ khí, cơ khí. Sơ hành trình kép của dao cạo kiểu khí nén: 400-600 htk/phút, kiểu điện - cơ khí: 900-1200 htk/phút.

11.4. KȲ THUẦT CẠO

Chât lượng và năng suát khi cạo phụ thuộc nhiều vào bề mạt trước khi cạo. Thông thuờng bề mạt này được gia công trước đó bằng phay, bào đới với mặt phả̉ng. Lổ trước khi cạo thường được khoan, khoét, doa. Đọ̣ không phả̉ng của bề mặt trước khi cạo được kiểm tra bằng khe sáng không lớn hơn $0,1 \mathrm{~mm}$ với các chi tiết có chiểu dài đến 500 mm , từ $0,2-0,3 \mathrm{~mm}$ với chi tiết có chiều dài lớn hơn.

Hinh 11.4. Chuẳn bị bề mật trước khi cạo
a) Xoa son màu lên mặt phẳng kiểm;
b) Ap chi tiết và đả̉y trượt trên mật phẩng kiểm;
c) Vết sơn màu trên chi tiết.

Trước khi cạo mặt phả̉ng, trên bề mặt bàn kiểm phẳng, người ta xoa một lớp sơn màu mỏng (hình 11.4 a). Bề mặt cần cạo được làm sạch bằng bàn chải và giẻ mềm, sau đó đạ̣t bề mặt đó thật cẩn thận trên bề mặt bàn kiểm phả̉ng và đẩy nhẹ. Sau $2-3$ vòng chuyển động trên bàn kiểm phẳng (hình 11.4 b), chi tiết được nhấc ra, bề mặt có độ phẳng là bể mặt có các điểm dính sơn phân bố đều, còn bề mật chưa phả̉ng có số điểm dính sơn phân bố không đều (hình 11.4 c).

Năng suất khi cạo phụ thuộc nhiều vào việc gá đặt chi tiết trước khi cạo.

Chi tiết phải được gá đặt chắc chắn, kẹp chặt, ở vị trí dể thao tác, dễ kiểm tra. Hình 11.5 là môt đồ gá để gá đặt chi tiết trước khi cạo, chi tiết rānh mang cá A cần cạo được gá đặt trên tấm 1 và kẹp chặt nhờ cơ cấu đòn kẹp kiểu ren vít 2 . Than 3 là coo cấu có thể quay trong mặt phẳng thẩng đứng và được cơ dịnh bằng vít 4. Tấm 1 có thể quay trong mặt phẳng nằm ngang cùng với dé 5. Nhờ cách gá đạt như vậy có thể tạo được vị trí thuận lợi cho người công nhân khi thao tác.

Với các chi tiết lớn, nặng cần cạo, trước hết cố định chi tiết đó lên sàn, bệ, dùng bàn kiểm phẳng phủ

Hinh 11.5. Đồ gá để gá đặt chi tiết trước khi cạo
1- Tắm gá chi tiết; 2,4-Vit kẹp; 3-Thân; 5- Đé. sơn đẩy trượt trên bề mặt cần cạo.

Quá trình cạo bất đẩu bẳng việc dùng dao cạo hớt đi lớp kim loại cao nhất (các vết có dính sơn). Khi cạo, tay phải nắm vào chuôi dao cạo, tay trái tỳ lên thân dao cạo (hình 11.6). Dao cạo đặt nghiêng một góc $25-30^{\circ}$ so với bề mật gia công.

Khi cạo bà̀ng dao cạo phẳng thường dùng cách cạo đảy, còn khi cạo bà̀ng dao cạo đẩu cong thường dùng cách cạo kéo.

Để nâng cao chất lượng bề mặt, khi cạo chia ra nhiều lần cạo: cạo thô, cạo bán tinh và cạo tinh. Khi cạo thô dùng dao cạo có chiều rộng $20-30 \mathrm{~mm}$, hành trình cạo $10-15 \mathrm{~mm}$, mỗi hành trình cạo bóc đi lớp phoi dày $0,02-0,05 \mathrm{~mm}$. Cạo bán tinh dùng dao cạo rộng $12-15 \mathrm{~mm}$, hành trình cạo $5-10 \mathrm{~mm}$, mỗi hành trình cạo bóc di lớp phoi dày $0,01-0,02 \mathrm{~mm}$. Cạo tinh dùng khi cần gia cong chi tiết rất chính xác, dùng dao rộng $5-12 \mathrm{~mm}$, hành trình cạo $3-5 \mathrm{~mm}$ (vết cạo rất nhỏ), lượng phoi bóc đi nhỏ hơn $0,01 \mathrm{~mm}$.

Bề mặt sau khi cạo đạt yêu cầu là bề mặt không có vết xước, vết lôm sâu của dao cạo, bề mặt phải có vân đều và nhỏ. Độ phẳng của bề mặt sau khi cạo dược đánh giá qua số diểm (vết) dính sơn trong một diện tích hình vuông kỉch thước $25 \times 25 \mathrm{~mm}$ (khung vuông kiểm tra) (hình 11.6 c).

Ví dụ: các chi tiết củz. máy công cụ (bàn trượt, sống trượt, bàn máy...) số điểm dính sơn là $8-16$ điểm, các thước và bàn kiểm phẳng: $20-25$ diểm, dụng cụ và dụng cụ đo: $25-30$ điểm. Bảng 11.3 cho các số liệu về chất lượng bể mặt khi cạo cho các trường hợp sử dụng khác nhau.

Hinh 11.6. Cạo mật phẳng
a) Tư thế khi cạo; b) Cạo bẩng cách kéo; c) Kiểm tra bể mặt sau khi cạo qua khung vuông.

Bảng 11.3. Chất lượng bề mặt khi cạo cho theo các dạng bề mặt

Bề mặt cấn cạo	Số điểm dính sơn yêu cẳu trèn diện tích $25 \times 25 \mathrm{~mm}$	Bể mặt cả̉n cạo	Số điểm dính sơn yêu cấu trên diện tích $25 \times 25 \mathrm{~mm}$
Nắp ổ trục chính Co cấu dẫn hướng của máy có độ chính xác thông dụng, trong vùng: - Thường xuyên dịch chuyển - Dịch chuyển theo chu kỳ	$\begin{aligned} & 18-20 \\ & 10-12 \\ & 8-10 \end{aligned}$	Co cấu dã̃n hương của máy có độ chính xác cao, trong vùng: - Thường xuyên dịch chuyến - Dịch chuyển thec chu ky Bạc ổ đõ có độ chính xàc trung binh	$\begin{aligned} & 16-28 \\ & 10-12 \\ & 12-16 \end{aligned}$

Cạo các bề mặt định hình, bề mặt cong (ví dự: bề mặt gối đỡ) thực hiện theo cách sau (hình 11.7 a): dùng cổ trục hoạc trục kiểm có cùng dường kỉnh đượ bôi iên mọt lớp som màu mong va lăp lên gói dỡ, ấn cho quay trên ó và láy trục ra, sau đó tìm những diển cao dính son để cạo bầng dao cạo ba cạnh (hình 11.7 b),

Hinh 11.7. Cạo bể mặt cung cong
a) Trục bôi sơn màu; b) Bề mặt diṇn sơn cẩn cạo; c) Cạo bề mặt cong; d) Dương kiển tra: 1- Dương kiêm; 2 - Dao cạo; 3-Tay trài người thợ.

Dùng tay phải cầm vào chuôi dao cạo 2. và quay đi khi cạo, tay trái 3 ấn dao cạo vào bề mặt gia cóng, dao cạo dặt hun nghiêng so với bề mặt cần cạo để cạo bề mặt vào phần giữa của lưởi cắt. Bề mặt sau khi cạo được kiểm tra bằng dưỡng lưới làm từ xen-lu-lô.

Bà tập:

Cạo bề mặt sớng trượt dạng mang cá (duoii én) bị mòn (hình 11.8).

Hinh 11.8. Cạo bế mặt sống trượt

Thứ tự cóng việc cần tiến hành như sau:

1. Đặt sống trượt lên một giá gỗ, để một mặt của nó quay lên.
2. Kiểm tra mức độ mòn của bề mặt này, nếu có vết, gờ trước hết dùng giũa để sửa nguội.
3. Xoa bề mặt trên bàn kiểm phẳng đã bôi màu để tìm nhựng chổ không phẳng.
4. Dùng dao cạo mặt phả̉ng dể cạo thô những chỗ cao nhất (những điểm dính màu) cho đến khi có tù 4-6 điểm dính sơn trên khung vuông kiểm tra.
5. Quay chi tiết cho mặt thứ hai lên.
6. Cạo mặt thứ hai theo phương pháp như khi gia công mạat thứ nhất.
7. Dùng thước góc để kiểm tra góc giữa mạat 2 và mặt 1 xem có bảo đảm góc chính xác hay không.
8. Quay chi tiết cho mặt thứ ba quay lên.
9. Gia công mặt thứ ba theo phương pháp như khi gia công hai măt 1 và 2 .

10 . Trong khi giũa và cạo, cần tiến hành kiểm tra góc và mặt phẳng.
11. Sau khi cạo thô, dùng dao cạo đā mài sấc tiến hành cạo tinh các mặt sao cho có từ $20-25$ điểm dính sơn trên khung vuông kiểm và kiểm tra góc giữa các mặt làm việc bảo đảm đọ chính xác bằng dưỡng kiểm.

Câu hỏi

1. Cạo là gì? Cạo thường dùng để gia công các loại bề mặt nào?
2. Các loại dụng cụ dùng khi cạo?
3. Trình tự mài sắc và mài bóng dao cạo?
4. Lượng dư để lại cho cạo căn cứ vào yếu tớ gì?
5. Trình tự công việc cần làm trước khị cạo?
6. Cách thao tác và tư thế cưa người công nhân khi cạo?
7. Đánh giá chất lượng bề mặt sau khi cạo bằng cách gì?
8. Các biện pháp cơ khí hoá khi cạo?

Chương 12

MÀI NGHIỀN, RÀ

12.1. KHÁI NIỆM

Mài nghiền là phương pháp gia công chi tiết dùng bột mài trộn với dầu nhờn và một số hoá chất khác tạo thành bột nghiền bôi lên bề mặt dụng cụ nghiển làm từ vật liệu mềm rồi di chuyển dụng cụ có bột nghiền đó trên bề mặt gia công.

Rà bề mặt là bôi bột nghiền mịn lên bề mặt của hai chi tiết sẽ lắp ghép với nhau khi sử dụng, cho chúng tiếp xúc và chuyển động tương đối với nhau. Trong quá trình chuyển động, bột rà mịn sẽ rà, sửa cho hai bề mặt bảo đảm tiếp xúc đều. kín khít.

Mài nghiền, rà dùng khi gia công tinh các bề mặt cần đạt độ nhă̆n bóng cao, đặc biệt là các bề mặt cần bảo đảm độ kín khít khi làm việc như nghiền, rà bộ đôi pit tông- xi lanh bơm cao áp, rà su páp và lổ coon của dộng co đốt trong, nghiền, rà các mặt dầu của van phần phới...

Mài nghiền có thể gia công các bề mặt trụ ngoài, lỗ, mặt phẳng và các mặt định hình. Khi nghiền, lượng kim loại dược hớt di rât mỏng (mổi lần nghiền lượng dư là $0,002 \mathrm{~mm}$), vì thế trược khi nghiền, bề mặt cần được mài tinh luợng dư để lại không lớn hơn $0,01-0,02 \mathrm{~mm}$. Lượng du lớn làm cho năng suất nghiền thấp.

Mài nghiền có thể đạt độ nhẵn bóng bề mặt rất cao, khi nghiền tinh, chiều cao nhấp nhô dạt dược $0,6-1,6 \mu \mathrm{~m}(1 \mu \mathrm{~m}=0,001 \mathrm{~mm})$, khi nghiển tinh mỏng: $0,16-0,4 \mu \mathrm{~m}$.

12.2. VẬT LIẸU NGHIỀN

Khi mài nghiền dùng các loại vật liệu mài khác nhau dưới dạng bột có kích thước nhỏ từ thiên nhiễn hoặc nhân tạo:

- Cacborundum (60% ôxit nhôm) là loại vật liệu mài có thành phần không đồng nhất do đó sử dụng bị hạn chế.
- Cô-run tự nhiên ($62-98 \%$ ôxit nhôm) là một trong những loại vật liệu mài tốt, hay sử dụng.
- Cô-run nhân tạo có tính đồng nhất cao hơn côrun tự nhiên (2-5\% tạp chất), hạt mài có lư̛ơi cắt sắc và độ bền cao.
- Cacbua silic (có thành phần hoá học là cacbon và silic) được chế tạo bằng phương pháp thiêu kết cát thạch anh với bột than.

Bột mài còn chia ra các loại theo độ hạt. Có hai phương pháp phân loại độ hạt:

- Phương pháp thứ nhất là phương pháp lắng trong nước: dùng một bình cao chừng một mét chứa đầy nước. Khi cho hạt mài vào, loại hạt mài có kích thước lớn và nặng nhất sẽ chìm, lấng xuống nhanh nhất, còn lại các hạt mài nhỏ thì lắng xuống chậm và sē lơ lửng trong nước một thời gian. Khi ấy phân loại độ hạt theo thời gian (số phút) cần thiết để hạt mài lắng xuống trong bình chứa nước. Ví dụ: bột mài số 1 có thời gian lắng là 5 phút; bột mài số 2 có thời gian lắng là 10 phút...
- Phương pháp thứ hai là dùng rây, tức là dùng các loại rây mà mổi tấc vuông (tấc vuông Anh) có từ $80-240$ lổ để sàng hạt. Số hiệu bột mài sẽ căn cứ vào số lổ của rây dể quyết định.

Khi nghiền sơ bộ, để nâng cao nãng suất, lượng dư cắt lớn thường dùng hạt mài thô, loại số $220,240 \ldots$, còn khi nghiền tinh, cần bảo đảm độ nhẫn bóng bể mặt cao dùng bột mài mịn M7, M5...

Khi nghiển có thể dùng bột nghiển dưới dạng dung dịch hoạc bột nhão. Loại bột nhão tiêu chuẩn có thành phần chủ yếu gồm ôxit crôm, stearin, dầu hoả và một số hoá chất khác. Bột nhão được chia thành ba loại: bột nhão thô có màu xanh đậm gần đen, bột nhão vừa có màu xanh đậm và bột nhão mịn có màu vàng sáng. Khi dùng bột nhão thô có thể bóc đi lớp kim loại (lượng dư) từ một vài phần mười đến vài plần trām milimét, bột nhão vừa dùng cho lượng dư một vài phần trām milimét, còn bột nhão mịn khi lượng dư một vài phần ngàn milimét.

12.3. KY̌ THUẬT NGHIỀN, RÀ

1. Bôi trơn khi nghiền: khi nghiền không được dùng cách nghiền khô bằng bột mài vì khi nghiền khô, bột mài sẽ phân bố không dều, hạt mài sẽ bị cùn đi rất nhanh, phát sinh nhiệt khi gia công, quá trình cắt sẽ chậm lại và bề mặt không đạt được đọ̣ nhã̃n bóng cần thiĉ́t.

Tuỳ theo dụng cụ nghiền sẽ dùng loại chất bôi trơn khác nhau. Khi dụng cụ nghiền bằng gang thì dùng xăng hoặc dầu hoả, khi dụng cụ nghiền bằng đồng, dùng dầu máy, cồn hoặc dung dịch cacbonat natri, dụng cụ bằng hợp kim đồng thì dùng dàu máy trộn với mỡ động vật. Đem chất bôi trơn và bột mài trộn với nhau dưới dạng nhão rồi bôi lên bề mặt dụng cụ nghiền.
2. Dụng cụ, gá lấp khi nghiền: Dụng cụ nghiền có hình dạng tuỳ thuộc vào bề mặt cần nghiĉ̀n. Khi nghiền phẳng, dụng cụ nghiền là các tấm phẳng dạng hình chữ nhật hoạc dạng dĩa tròn. Khi nghiền mặt trụ ngoài dùng các loại bạc nghiền hoặc dĩa nghiĉ̀n. Khi nghiền lổ dùng chày nghiền côn có lắp bạc xẻ rānh để có thể tãng áp lực khi nghiền.

Vật liệu làm dụng cụ nghiền có nhiều loại khác nhau, nhưng thường làm từ loại vật liệu mềm hơn so với vật liệu của bề mặt cần nghiền để có thể giữ được các hạt mài tự do và thậm chí các hạt mài có thể gām trên bề mặt dụng cụ nghiền bảo đảm quá trình cắt của các hạt mài. Nếu dùng dụng cụ nghiền bằng vật liệu cứng, hạt mài khó có thể giữ trên bề mạ̉t dụng cụ, thậm chí có thể bị chèn ép, vỡ trên bề mặt dụng cụ, không bảo dảm quá trình cắt.Thông thường dụng cụ nghiền làm từ gang có độ cứng trung bình: $140-200 \mathrm{HB}$, dồng. phíp, gỗ cứng...

Khi nghiền mặt phà̉ng bằng tay, thường dùng dụng cụ nghiĉ̀n là các tấm phẩng cố định có hình dáng, kích thước tuỳ thuộc vào bề mặt cần nghiền.

Hinh 12.1. Tấm nghiển phả̉ng
a) Tấm nghiền phẳng có các rânh trên bề mặt;
b) Tấm nghiền phẳng (nghiển tinh);
c) Tấm nghiển lớn để cho chi tiểt có thẻ địch chuyển được trên tầm.
3. Kỹ thuật nghiền: Chi tiết cần nghiền (hình 12.1 c) đặt lên tấm nghiền phẳng có chứa bột nghiền và đẩy đi đẩy lại hoạ̣c xoáy tròn trên bề mặt tấm phả̉ng, chuyển động càng phức tạp thì các vết mài xoá nhau càng đều, dày, độ nhẫn bóng bề mặt đạt được càng cao. Áp lực khi ấn chi tiết xuống cẩn đều, vừa phải $\left(2-2,5 \mathrm{kG} / \mathrm{cm}^{2}\right)$, khồng nên ấn quá mạnh để tránh cho chi tiết khỏi nóng quáa có thể gây biĉ́n dạng chi tiết khi nghiền. Sau khoảng $9-10$ vòng chuyển động thì dùng giẻ lau lớp bột nghiền cŭ đi và bôi lên bề mặt một lớp
bột nghiền mới và tiếp tục nghiền cho tới khi bề mặt đạt yêu cầu.
Khị nghiền thường chia ra làm các bước: nghiền sơ bộ (nghiền thô) nghiền bán tinh và nghiền tinh, nếu cần có thêm bước nghiền tinh mỏng (nghiĉ̀n lần cuối). Khi nghiền sơ bộ, dụng cụ nghiền là các tấm phẳng có các rãnh dọc và ngang dể chứa bột mài (hình 12.1 a), các rãnh này có chiều sâu $1-2 \mathrm{~mm}$ và khoảng cách giữa các rãnh $10-15 \mathrm{~mm}$. Khi nghiền tinh thường dùng các tấm nghiền phả̉ng, nhẳn (hình 12.1 b).

Nghiền mặt phẳng trên tấm nghiền có thể đạt được độ chính xác cao, thường dùng để nghiền các chi tiết như dưỡng, calíp, căn mẫu...

Hình 12.2 giới thiệu phương pháp nghiền mặt phẳng của các chi tiết có mặt cần nghiền hẹp. Để dể thao tác, có thể ghép nhiều chi tiết bằng chốt (hình 12.2 a) và ép vào thanh gổ rổi cùng với thanh gỗ dịch chuyển trên bể mặt dụng cụ nghiền.

Hinh 12.2. Nghiến mặt phẳng các chi tiết
a) Bể mặt nghiền nhỏ, hẹp; b) Nghiển thước góc; c) Nghiển mặt đầu xéc măng.

Khi nghiền thước góc (hình 12.2 b), dùng đinh đóng vào gỗ và chêm cho thước góc giữ chặt trên thanh gỗ rồi dịch chuyển thước góc cùng với thanh gổ trên tấm nghiền. Với các chi tiết xéc măng của động cơ đốt trong, trước khi nghiền, đóng nhẹ vào trong lỗ xéc măng một miếng gô (hình 12.2 c) để có thể giữ dược xéc măng trong quá trình chuyển động khi nghiển mặt phẳng.

Trong điều kiện sửa chữa, không có các thiết bị chuyên dùng, nghiền rà su-pap có thể dùng tay quay, quay su-pap trên lổ côn (hình 12.3 a). Để đánh giá chất lượng sau khi gia công, có thể cān cứ vào vết bể mạa để lại sau khi nghiền rà (hình 12.3 b).

Hình 12.3. Nghiền rà bầng khoan tay
a) Thao tác khi nghiền;
b) Bề mặt chi tiết sau khi rà bầng bợt nghiền;
c) Rà bằng khoan tay:

1-Lò xo; 2-Chìa vặn; 3-Thân van; 4-Đế van; 5- Đầu khoan.
d) Gá lấp kiểu khoan tay:

1,3,5-Bánh răng co̊n; 2-Trục; 4-Thân; 6- Tay quay; 7-Trục.

Hình 12.4. Nghiè̉n các bề mặt dạng trụ tròn
a) Dụng cụ nghiền lỗ; b) Ống gà và bạc nghiền trục.

Khi nghiền các chi tiết dạng trụ (pit-tông, xi lanh bơm cao áp, van trượt...) dùng bạc nghiền xẻ ränh (hình 12.4).

Bac nghiền để nghiền lô (hình 12.4 a) được xẻ rãnh dọc để có thể co bóp được, trên chu vi bên ngoài bạc có các rảnh xoắn để chứa bột nghiền. Bạc nghiền được đóng vào trục côn của chày nghiền và đưa vào trong lổ cần gia công. Khi đóng bac nghiền theo trục côn, do có rãnh dọc, bạc nghiền bung ra tạo áp lực lên bề mặt lổ khi nghiền.

Bac nghiền để nghiền trục (hình 12.4 b) cũng được xẻ rãnh dọc và lắp vào trong ống gá, sau khi dưa trục cần nghiền vào, xiết bu lông trên ống gá, bạc nghiền sẽ bóp lại, tạo ra áp lực nghiển trên trục.

12.4. CO KHI HOAA CÓNG VIẸC NGHIÊN, RÀ

Công việc nghiền, rà có thể tiến hành cơ khí hoá một phần khâu chuyển động quay tay bà̀ng chuyển động quay của đầu khoan tay hoặc khoan điện (hình 12.3 c). Khi đó đầu khoan 5 lấp chìa vặn 2 cắm vào rãnh ở mặt đầu của thân van. Khi quay đi quay lại đầu khoan 5 và ạ́n xuống thân van, nó sẽ ép lò xo 1 lại và bột nghièn mịn sẽ rà khít phần côn của thân van với đế 4 .

Đầu khoan (hình 12.3 d) có thể quay với tốc độ lớn, cho nẳng suất khi nghiển cao hơn. Khi quay tay quay 6 , chuyển động quay được khuếch đại qua cạ̣p bánh rāng côn 3,5 lắp trên trục 2 ăn khớp với bánh răng côn 1 lắp với truc ra 7.

Hình 12.5 là sơ đồ một số máy nghiền. Khi nghiền mặt phẳng, đĩa nghiền quay (hình 12.5 a) hoặc cớ định (hình 12.5 b), chi tiết cần nghiền có
chuyển động quay, lắc đi, lại nhờ cơ cả́u thanh truyền 4 hoặc nhờ gá lệch tâm để các vết của hạt mài khi nghiền xoá đều, nâng cao độ nhẳn bóng bề mặt.

Hinh 12.5. So đồ nghiền trên máy
1- Dụng cụ nghiền; 2,3-Chi tiết gia công; 4- Cơ cắu thanh truyền; 5-Cam.
Khi nghiền lỗ, bạc nghiền 1 dược xẻ rãnh, có lổ côn lắp trên trục côn của máy nghiền, nhờ đó có thể tâng áp lực nghiền khi đóng bạc 1 lên theo trục
côn. Dụng cụ nghiền vừa thực hiện chuyển động quay vừa tịnh tiến lên xuống nhà̛ các cơ cấu của máy trên sơ đồ (hình 12.5 c).

Khi nghiền trên máy thường chia làm nhiều bước: nghiền sơ bộ, dùng bột thô, các bi̛ớc tiếp theo gồm nghiền bán tinh, nghiền tinh dùng bột mịn hơn. Sau mổi lần nghiền khoảng $1-2$ phút, dụng cụ nghiền được đưa ra khỏi bề mặt gia công, dùng dầu hoả rửa sạch bột ṇghiền và dùng giẻ sạch lau khô, sau đó dùng dụng cụ đo đánh giá chất lượng gia công trước khi đưa vào bước nghiền tinh hơn.

Hinh 12.5 d là sơ đồ một máy dể nghiền rà van côn gồm trục van côn 3 và $1 o ̂ ̃$ côn 2 . Khi đó một trong hai chi tiết (trục van) thực hiện chuyển động quay và tịnh tiến di lại theo chu kỳ nhờ cơ cấu cam 5 trên máy. Để cải thiện chất lượng bề mặt khi nghiền, thường dùng dung dịch nghiền gồm bột nghiền và dung dịch bôi trơn cấp dều liên tục lên bề mặt.

Bề mặt sau khi nghiền rà được đánh giá qua vết sơn màu để lại sau khi cho các chi tiết tiếp xúc với nhau, nếu vết màu để lại phân bố đều trên hầu khắp bề mặt là đạt yêu cầu.

Câu hỏi

1. Thế nào là nghiền, rà? Tại sao lại phải nghiền, rà?
2. Bề mặt trước khi nghiền cần phải đạt những yêu cầu gì?
3. Nghiền có thể gia công được những dạng bề mạat gì?
4. Dụng cụ nghiền làm từ loại vật liệu gì?
5. Có những loại bột nghiền gì? thành phần của bột nhão khi nghiền?
6. Khi nghiền tay những chi tiết khó thao tác (mặt nghiền hẹp, mỏng, dễ biến dạng...) cần có những biện phấp gì?
7. Hãy nêu các chuyền động, các thông sớ công nghệ khi nghiè̀n, rà?
8. Dụng cụ khi nghiền $10 \delta ?$ khi nghiền trục?
9. Các biện pháp cơ khí hoá khi nghiền, rà?

Chương 13

KHÁI NIỆM VÊ THIẾT KẾ QUY TRÌNH CÔNG NGHỆ

13.1. KHAI NIẸM

Trong một nhà máy cơ khí, để chế tạo ra một sản phẩm cơ khí (chi tiết, cụm cơ cấu, thiết bȧ...) đòi hỏi phải tả̉i qua mợt quá trình sản xuắt phức tạp. Các phoi liẹu (phơi đúc, phôi rèn, dập...) sau khi chê tạo phoi được đưa vào phân xưởng cơ khí gia công trên các máy công cụ (tiện, phay, bào, khoan, doa, cắt răng, mài...), gia công nguội và sửa đúng, nhiệt luyệ̉n... đẻ̉ tạo nén chi tiết thành phẩm với hình dáng, kích thước, chất lượng theo yêu câuu.

Quá trình để biến nguyên vật liệu và bán thành phảm thành sản phảm theo yêu cầu được gọi là quá trinh $\operatorname{sản}$ xuất trong một nhà máy cơ khí.

Quá trình sản xuất có thể chia ra ṇiều quá trình khác nhau như: quá trình chế tạo phôi, gia công cắt gọt, gia công nhiẹt, hoá, lắp ráp, sửa chữa, chế tạo và phục hồi dụng cụ, vận chuyển...

Quá trình công nghệ là một phần của quá trình sản xuất trực tiếp làm thay đổi hình dáng, kích thước, trạng thái tương quan và tính chất của chi tiết (đối tượng sản xuất).

Trong các quá trình công nghệ có quá trình công nghệ gia công cơ
Quá trình công nghệ gia công cơ là quá trình cắt gọt phôi để làm thay đởi hình dáng, kích thước tạo thành chi tiết theo yêu cầu trên bản vē. Khi thiết kế quá trình công nghệ, để bảo đảm hiệu quả kinh tế, thường người ta phải đưa ra các phương án công nghệ khác nhau và từ các phương án đó chọn ra một phương án hợp lý nhất, hiệu quả nhất để áp dụng vào sản xuất và xây dựng nên các tài liệu công nghệ, người ta gọi đố là quy trình công ngiệ.

Mục đích của việc thiết kế quy trình công nghệ gia công cơ là chọn phôi liệu phù hợp (hình dáng, kích thước...) theo điều kiện sản xuất đã cho, xác định trình tự gia công hợp lý các bề mặt của chi tiết, chọn thiết bị, dụng cụ cắt, dụng cụ đo, gá lấp, chế độ cắt, định mức thời gian, bậc thợ... phù hợp để bảo đả̉m chất lượng sản phẩm theo yểu cầu với chi phí ít nhất, nāng suất cao, dem lại hiệu quả kinh tế.

Trong một quy trình công nghệ thường dược chia ra thành các nguyên công, bước, gá, vị trí, dường chuyển dao...

Nguyên cóng là một phần của quy trình công nghệ được thực hiện liên tục, tại một chô làm việc do một hoặc một nhóm công nhân cùng thực hiện. Ví dụ: sửa nguội thân gối đỡ để lấp ổ bao gồm hai nguyên công cạo sửa bề mạat gối đỡ, sau đó đưa sang chố lắp để lấp ổ đỡ.

Btớc là một phần của nguyên công để gia công một bề mặt (hoạac một tập hợp bề mặt) bằng một loại dụng cư, gá lắp. Ví dụ: Giûa nguội một mặt phẳng là nguyên công giŭa bao gồm hai buớc giũa thố bằng giũa phá và giũa tinh bằng giữa mịn. Nguyên công giũa nguọi đai óc vuông bao gồm bớn bước để giúa bớn cạnh của đai ớc đó.

Dırờng chuyèn dao là một phần của bước để hớt đi một lớp vật liệu. Khi đó tuỳ thuọ̣c vào lượng dư gia công có thể có một hoặc nhiều đường chuyển dao. Ví dụ: khi giũa nguọi mặt phẳng có chiểu sâu lớp kim loại cần hớt đi là $1,5 \mathrm{~mm}$; nếu mర̂̀ lẫn giưa chỉ hớt đi một lượng là $0,1 \mathrm{~mm}$, ta sẽ có 15 lấn chuyển dao.

Gá đặt là cơng việc xác định vị trí và kẹp chạt chi tiết trước khi gia công.

13.2. CHỌN THIÉT BI, DỤNG CỤ, GÁ LǺP

Công việc chọn hợp lý thiét bị, dụng cụ, gá lắp có ành huởng lớn tới chất lượng, năng suất và giá thành gia công chi tiết. Vì thế khi thiết ké́ quy trình công nghệ gia công chi tiết cần phân tích, cân nhắc kỹ luỡng khi xác dịnh, lựa chọn thiết bị, dụng cụ, gá lắp...

Thông thuờng khi chọn dụng cu (dụng cụ cất, dụng cụ đo), xu hướng là chọn dụng cụ vạn năng, tiêu chuẩn, có sẫ. Ví dụ: khi chế tạo các chi tiết có độ chính xác cấp 7 , nếu số lượng chi tiết ít, nên dùng các dụng cụ kiểm tra loại vạn nāng (thước cạ̣p, pan me...), nếu số lượng lớn nên dùng các loại calip, dưỡng kiểm...

Về đồ gá: chỉ thiết kế, chế tạo đồ gá chuyên dùng khi số lượng chi tiết gia công trên đồ gá đó đủ lớn để bù đắp chi phí cho chế tạo đồ gá; trong đồ gá, cơ cấu kẹp chặ chi tiết cần chọn sao cho phù hợp với số lượng chi tiết gia công trên đó, thời gian thao tác khi gá dặt và tháo chi tiét nhanh.

13.3. XÁC LẬP CAC TÀI LIỆU CÔNG NGHẸ

Sau khi đưa ra các phương án công nghệ để gia công chi tiết, thông thường người ta tiến hành so sánh các phương án dể chọn ra một phương án hiệu quà, hợp lý nhất trong điều kiện sản xuất đã cho. Tù̀ phương án quy trình công nghệ được lựa chọn sễ xây dựng các tài liệu, các phiếu công nghệ để hương dẫn sản xuật và phục vụ cho các công việc quản lý, theo dõi, tính toán...

Trong các phiếu công nghệ cần có bản vē chi tiết hoặc sản phả̉m, tên gọi, đặc tính kỹ thuật, số lự̛̣ng chi tiết, vật liệu, trọng luợng, chế độ gia công nhiệt...., sau đó là trình tự các nguyên công gia công cân thực hiện, chọn và xác định thiết bị, dụng cụ, gá lấp, ché độ gia công, phương pháp kiểm tra...

Một quy trình công nghệ thiết kế tỉ mỉ, chặt chẽ còn cần thành lập các phiếu nguyên công cho từng nguyên công công nghệ. Mổi phiếu nguyên công cần chỉ rõ tên gọi của nguyên công đó, thứ tự của nguyên công trong quy trình công nghệ, sơ đồ gá đặt của nguyèn công, thứ tự các bước, đường chuyển dao, động tác, thớng kê loại thiết bị để gia công, các loại dụng cụ (dụng cụ cắt, dụng cụ đo, dụng cụ phụ...), gá lấp, chế đợ gia cồng cho từng bước, bạc thợ, định mức thời gian gia công... cho nguyên công đó.

Công việc thiết kế quy trình công nghệ là một công việc phức tạp nhưng rất quan trọng, nó ảnh hưởng tới chất lượng sản phẩm chế tạo và giá thành sản xuất, vì thế để lựa chọn phương án hợp lý nhất cần phải được mợt tập thé những người làm công tác kỹ thuạt xom xét và thơng qua.

Sau khi quy trình cong nghệ đã được lựa chọn và triền khai vào sản xuất, đòi hỏi phải có sự tuân thủ nghiêm túc của những người thực hiện với những nội dung mà quy trình công nghệ dã vạch ra nhằm bảo đảm chất lượng sản phả̉m chế tạo, hiệu quả kinh tế, tránh bớt khả nāng phát sinh phế phẩm. Trong quá trình triển khai quy trình công nghệ vào sản xuất, bất kỳ một sửa đởi, sáng kiến, cải tiến nào cũng cần đưa lên bàn bạc, phân tích, xem xét kỷ lưỡng rồi mới quyết định sửa đổi và áp dụng.

Bài tập 1: Quy trình công nghệ gia công búa tay bầng phương pháp nguọi:

BẢN VẼ CHẾ TẠO BÚA NGUỘI

Bảng 13.1. Các kích thước cơ bản của búa tay (mm)

ca só cu่a búa	Trong Jựng (gam) $+5 \%$	H	B	h	b	b_{1}	a	h_{1}	R	R_{1}	f	1
1	50	75	11	12	7	2	2	34	145	1		1,5
2	100	82	15			3	2,5	36	160	1,25	0,7	2
2	150	88	17	16	9	4		40	175	1.5	0.8	2,5
4	200	95	19	20	10	4.5	3	43	190	1,75		3
5		105	23			5.5		48	210	2	0,9	3.5
6	400	112	25	25	12	6	4	50	225	2.5	1	4
7	500	118	27			6,5		52	240			4,5
8	600	122	29	30	15	7	5	54	250	3	1,2	5
9	800	130	33			7,5		56	265			5,5
10	1000		35	32	18		6			3,5	1,3	6

PHIẾU CÔNG NGHẸ

$\begin{aligned} & \text { ió } \\ & \text { hứ } \\ & \text { tự } \end{aligned}$	Tênnguyèn công	So đổ gia công	$\begin{gathered} \text { Thié } \\ t \mathrm{bi} \end{gathered}$	$\begin{aligned} & \text { Đó } \\ & \text { gá } \end{aligned}$	Dưng cu			Chỉ dẫn
					căt	do	phụ	
1	Kiển tra phôi liệu theo bản vẽ		$\begin{gathered} \text { Bàn } \\ \text { nguội } \end{gathered}$			Thứac cạ̣p 0,1 mm		Phôi liệu cẩn kié̉m tra đẻ lượng dư gia công của tùng mạt không nhỏ hon $0,1 \mathrm{~mm}$. Phơi khờng có vết nứ, rạn
2	Gia công mặt phẩng thứ nhát		$\text { Bàn } \begin{gathered} \text { Bậi } \\ \text { ngu } \end{gathered}$			Dương kiểm thẳng		Khi giũa mặt phẳng cần đạt độ thằng, vét giũa phân bơ theo chiểu dọc

3	Giūa mặt phả̉ng 2		$\begin{gathered} \text { Bàn } \\ \text { nguḅí } \end{gathered}$	Eto	GiOa phá măt phẩng	Thưóc góc 90°. dữ̛̉ng kiém thẩng	Khi giũa bảo đảm độ thẳng, độ vuông góc so với mặt đ̛̣̂u tiên. Kiểm tra bà̀ng dường thẳng và thưóc goc theo khe sáng.
4	Giヘ̃a măt phäng 3 và 4 song song vói mặt 1 và 2 theo kich thưóc		Bàn ngự̂i	Eto	Giūa phá măt phẩng	Thứ̛c căp $0,1 \mathrm{~mm}$ Thu'ठc góc 90° dương kiếm thả̉ng	Khi givea mạt 3 và 4 bảo đảm đo̊ thẳng va đọ́ song song vói các mặt 1 và 2 và đợ vuơng góc giữa chúng.
5	Lấy dấu theo bản vẽ		Bàn	Etô cớ lót dêm đống	Giūa phá mặt phẳng	Thước cặp, thước lá, thưóc $\mathrm{góc}$ 90°	Lấy dấu theo bản vê, núng tâm đường dấu. Lấy dấu thực hiện trên mặt 1
6	Giūa các mặt đẩu 5 6 của búa theo dấu		Bàn nguội	Étô có lót đêm đống	Mūi vach dǻu	Thước cạp, dưỡng kiểm, thước góc 90°	Giũa hai đầu theo đường dấu, bảo đảm vuông góc với các mặt bén, chiếu dài của búa theo bản ve
7	Gida mặt vát 7 và 8 theo dấu		Bàn nguội	Etô có lót đêm đổng	Giãa phá mặt phẳng	Dưỡng kiém, thước góc 90°	Giūa mặt vát 7 và 8 bảo đảm độ thẳng và vuông góc với mặt 1 và 2, kiếm tra theo đường vạch dấu

8	Giũa nguợi Iỗ 9 đé tra cán theo dắu		Bàn nguội c	Étô có lót đêm đống	Giũa vuông, gida tròn phá và min	Thưóc cạ̣p 0.1 m , dưỡng kiếm thẳng		Lỡ cần có kích thước hình dáng theo bàn ve, co độ vát côn đổ tra cán búa
9	Vát canh sấc theo bản vë và sưa tinh các maxt 10 , 12 và 11		$\begin{gathered} \text { Bàn } \\ \text { ngự̂i } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Étó } \\ \text { có lót } \\ \text { đêm } \\ \text { đống } \end{gathered}\right.$	Gija phẩng mịn			Vát canh sác bảo đảm góc 45°, đọ́ thẳng, độ nhẵn bóng bế mặt theo bản vẽ
10	Tôi đầu búa 13, 14 đat độ cứng HRC 49 -56. Đánh bóng.		Lò tôi, máy đánh bóng		Giấy ráp	.		Búa bảo đảm đọ̉ cứng, không giòn, đấu búa nhăñ, không còn vết giüa

Bài tập 2: Lạp phiếu công nghệ cho nguyên công lấy dấu mặt bích của xilanh thuy lực:

Tài liệu tham khảo

1-I. C. Bonsakob
Spravotnik Slesaria.
Leninzđat, 1974.
2 - G. M. Đesevôi
Spravôtnik Razmetrik Masinôstrôitrelia.
Masgiz; 1962.

3 - N. I. Makienko
Slesarnôie Đelô,
Proftekhizđat, 1960.
4 - D. E. Grinberg
Razmetrik Mekhanitreskic Seckhôp,
Moscva, 1960.
5-M. P. Novikôp
Osnovu Tehnologii Sborki Masin i Mekhanizmôv Moskva, 1962.

6 - M. P. Novikôp
Spravotnik Metalista, Tom 4,
M., " Masinôstrôenhie ", 1977.

7 - C. P. Popovici
Tehnologia Constructiei de Masini,
Bucuresti, 1967.

MỤC LỤC

Chutơng 1: Tổ chúc chô làm viẹc và kỹ thuật an toàn lao động51.1. Tổ chức lao động chổ làm việc nguội 5
1.2. An toàn lao động khi nguội 11
Câu hỏi 12 12 13
Chutơng 2 : Lấy dấu và ky thuật vạch dấu
Chutơng 2 : Lấy dấu và ky thuật vạch dấu 13
2.1. Khái niệm 14
2.2. Gá lắp và dụng cụ sử dụng khi lấy dấu
28
28
2.3. Kỹ thuậ lấy dấu 34
2.4. Láy dấu phẳng 53
2.5. Lấy dấu khối
70
70
Cáu hỏi
72
72
Chương 3: Đuc kim loại 72
3.1. Khái niệm
72
72
3.2. Dụng cụ dùng khi dục
75
75
3.3. Cơ khí hoá khi đục 75
3.4. Kỹ thuật đục 80
Câu hòi
81
81
Chương 4: Giüa kim loai 81
4.1. Khái niệm 81
4.2. Các loại giũ̃a
86
86
4.3. Kỹ thuật giũa
90
90 92
4.4. Giŭa các lở định hình và rà khớp các bề mặt
4.4. Giŭa các lở định hình và rà khớp các bề mặtCâu hỏi
93
Chương 5: Năn, uốn, gấp kim loai
93
93
5.1. Nắn kim loại 96
5.2. Uốn gấp kim loại 97
Câu hỏi
98
98
Chuong 6: Cua, cắt kim loại 98
6.1. Dụng cụ cưa, cắt kim loại
102
102
6.2. Kŷ thuật cưa cắt 106Câu hỏi
Chutơng 7: Khoan, khoét, doa lỗ 107107
7.1. Khoan lỗ 1227.2. Khoćt lỗ
7.3. Doa lô 124
Câu hỏi 128
Chuơng 8: Cắt ren 129
8.1. Khái niệm về ren 129
8.2. Các hẹ̣ ren 132 132
8.3. Dụng cụ cắt ren 133
8.4. Kỹ thuật cắt ren 137
Cấ hỏi 143 143
144
Chuong 9: Tán 144
9.1. Khái niệm 144 146
9.2. Các dạng đinh tán và mối ghép bằng đinh tán
9.2. Các dạng đinh tán và mối ghép bằng đinh tán9.3. Dụng cụ và gá lắp dùng khi tán146
9.4. Kỹ thuạt tán 148
9.5. Chất lượng khi tán và các quy tắc an toàn khi tán 151- Câu hỏi
Chutơng 10: Hàn, mạ thiếc 152
10.1. Ma thié́c 152 152 153
10.2. Hàn thiếc
10.3. Quy định an toàn ky thuật khi mạ, hàn thiếc 160 Câu hỏi 160
Chutơng 1I: Cạo 161
11.1. Khái niệm 161 161
11.2. Dụng cụ dùng khi cạo 162 162
11.3. Cơ khí hoá công việc cạo 165 165
11.4. Kȳ thuật cạo 167 167
Câu hòi 172
173
Chutơng 12: Mài nghiền, rà 173
12.1. Khái niệm
173
173
12.2.Vật liệu nghiền
12.2.Vật liệu nghiền
174
174
12.3. Kỹ thuật nghiền, rà
178
178 180
Câu hỏi
12.4. Cơ khí hoá công việc nghiền, rà
12.4. Cơ khí hoá công việc nghiền, ràChương 13 : Khái niệm về thiết kếqui trình công nghệ181
13.1. Khái niệm 181 182
13.2. Chọn thiết bị, dụng cụ, gá lắp
13.2. Chọn thiết bị, dụng cụ, gá lắp
13.3. Xác lập các tài liệu công nghệ 182
Bài tập 1: Quy trình công nghệ gia công búa tay bằng 183 phương pháp nguội
Bài tập 2: Lập phiếu công nghệ cho nguyên công lấy dấu mặt bích của xilanh thuỷ lực 187188
Tài liệu tham khảo

Chịu trách nhiệm xuất bản:
Chủ tịch HĐQT kiêm Tổng Giám dốc NGÔ TRẦN ÁI Phó Tổng Giám đốc kiêm Tổng biên tập VŨ DƯONG THỤY

Biên tập nội dung : TRÂN VĂN THÁNG
Trinh bày bia:
VÅN HƯNG
Sửa bản in:
TRẦN BİNH MINH
Chếbán:
ĐINH XUÂN DŨNG

KȲ THUẬT NGUộl

Mā số : 6G 107 M 5 -DAI
In 1.000 bản. khố $16 \times 24 \mathrm{~cm}$ tại Xí nghiệp In ACS Hải Phòng
Số in : 713 : Số XB : 89/70-05
In xong nộp lưu chiểu tháng 6 năm 2005

TiM DỌC SÁCH THAM KHẢO KĨ THUẠT CỨA NHÀ XUẤT BÅN GIÁO DỤC

1. Hình học hoạ hình
2. Ve kí thuật co khí tập một
3. Ve kĩ thuật cơ khí tập hai
4. Bài tập vẽ kĩ thuật cơ khí tập một
5. Bài tập vẽ kĩ thuật cơ khí tập hai
6. Công nghệ chế tạo máy
7. Sổ tay dung sai và lắp ghép
8. Kĩ thuật nguội
9. Kĩ thuật sưa chưa máy công cụ
10. Nguyên lí động cơ đốt trong
11. Lí thuyết động cơ điêzen
12. Thực hành động cơ đốt trong

Vū Hoàng Thái
Trần Hữu Quế
Trần Hữu Quế (Chủ biên)
Trần Hữu Quế
Trần Hữu Quế
Phí Trọng Hảo
Nguyễn Thanh Mai
Ninh Đức Tốn.
Phí Trọng Hảo
Nguyễn Thanh Mai
Lưu Văn Nhang
Nguyễn Tất Tiến
Lê Viết Lượng
Hoàng Minh Tác

Bạn đọc có thể tìm mua tại các Công ti Sách - Thiết bị trường học ở các địa phương hoặc các Cưa hàng sách của Nhà xuất bản Giáo dục : Tại Hà nội : 25 Hàn Thuyên, 187 Giáng Vō, 23 Tràng Tiền.
Tại Đà Nẵng : 15 Nguyễn Chí Thanh.
Tại Thành phố Hồ Chí Minh : 104 Mai Thị Lưu, Quận 1.

