NGUYỄN TRỌNG HIỆP

CHI TIẾT MÁY TẬP HAI

GS.TS. NGUYỄN TRQNG HIẸP

CHI TIẾT MÁY

TậP HAI
(Tái bản làn thú báy)

Chưng 12

TRUYỀN ĐộNG XÍCH

12.1. KHÁI NIẸM CHUNG

12.1.1. Cấu tạo chính của bô truyèn xich

Xích là một chuỡi các mất xich nơi với nhau bàng bản lé. Xích truyên chuyến đọng và tải trọng từ trục dân (trục chư động), sang trục bị dān (trục bị động) nhờ sự ăn khợ của các mât xích với các răng dia xich. Câu tạo chính của bộ truyên xich gờm đỉa dẫn Z_{1}, đīa bị dān Z_{2} và xich (hình 12.1). Ngoài ra tùy trường họ̣p, có thê có thếm bộ phận căng xfch, bọ phận bôi trơn, hộp che. Cơ khi düng mợt xich đé truyễn động từ đỉa dẫn sang nhiếu đi̛a bị dẫn (hỉnh 12.2 c).

Hinh 12.1

Hinh 12.2
12.1.2. Ưu, nhực diếm và phạm vi sử dụng

Ưu điếm của truyên đợng xich là :

- Có thê truyên chuyến đọng giữa các trục cách nhau tương đơi xa.
- So với truyển động đai, kich thước bộ truyến xích nhó gọn han, làm việc không có trượt, hiệu suất khá cao ($\eta=0,96 \div 0,98$) vả lực tác dụng lên trục tương đối nhơ.
- Có thể cùng một lúc truyến chuyển động và công sụát cho nhiếu trục.

Truyến động xich có những nhược điểm sau :

- Có nhiếu tiếng ồn khi lăm việc.
- Vận tớc tức thời của xích và đỉa bị dān không ổn định.
- Yêu cầu chăm sóc thường xuyên (bôi trơn, điêu chỉnh làm cảng xích).
- Chóng mòn, nhất là khi làm việc nơi nhiếu bụi và bôi trơn không tớt.

Truyển đợng xích chủ yếu được dùng trong các trường hợp các trục co khoảng cách trung bỉnh (nếu dùng truyên động bánh rạng cần có thêm các bánh răng trung gian...) ; yêu cẩu kích thước tương đơi nhó gọn hoạ̣c làm việc không trượt (do không dùng được truyên đọng đai).

Truyên động xich được dùng để giảm tốc độ quay hoạc tăng tớc độc quay giưa các trục song song. Công suất truyê̂n thường không quá 100 kW , khoảng cách trục a đến 8 mét. Trong các bộ truyến tớc độ cao (đỉa dẫn lấp với trục động cơ), vận tớc xích $v=6 \div 25 \mathrm{~m} / \mathrm{s}$, tỷ số truyến $u \leqslant 3$. Đối với các bộ truyê̂n tớc độ chậm (truyê̂n dẫn từ trục ra của hợp giảm tốc đến bộ phận công tác), vận tớc xich $v=2 \div 6 \mathrm{~m} / \mathrm{s}$, tỷ sớ truyên $u \leqslant 6$; nếu $v \leqslant 2 \mathrm{~m} / \mathrm{s}$ tỷ só truyến có thể tới $10 \div 15$. Bộ truyên xích được bó trí nẳm ngang (hình 12.2a) hoạc dớc nghiêng, đường nôi hai tâm tạo thành với mặt phảng ngang 1 góc ψ (hình 12.2 b).

Hiện nay truyến động xích được dùng rộng rải trong các máy vận chuyển (môtô, xe đạp, x(ch tải...), máy nông nghiệp, máy công cụ, tay máy...

12.2. CÁC LOẠI XÍCH TRUYỀN ĐỘNG VA DÍA XÍCH

12.2.1. Các loại xích truyền dộng

Các loại xích truyên động thường dùng hiện nay gồm xích con lăn, xich ớng, và xich răng. (Ngoài các loại xich truyên động, trong chê tạo máy còn có các loại xích trục, xich kéo đé nẫng hạ, vận chuyễn vật nặng). Cấu tạo, kích thước, vật liệu, cơ tính và độ chính xác của xích được quy định trong tiêu chuẩn.

Xích con lăn có cáfu tạo như trình bày trên hình 12.3 , góm các má trong 1 xen kê với các má ngoài 2 , cơ thể xoay tương đới đới với nhau. Các má trong 1 lấp chật với ơng 3 , các má ngoài lắp chặt với chốt 4 , ơng và chớt có khe hở, có thể xoay tự do đới với nhau, tạo thành bản lế. Nhầm mục đích giảm mòn răng đla xich, phía ngoài ơng có lấp con lăn 5 , cũng có thê xoay tự do. Để nới hai mất cươi của xich lại với nhau thành vòng kin, thương dùng chớt chẻ (hỉnh 12.4 a). Nêu số mắt xích là lẻ, phải dùng mất chuyển có má cong (hỉnh 12.4 b) và cūng dự̛̣c chớt bả̃ng chớt chẻ. Dùng mất chuyển, xích bị yêu do tại đây trong má xích có thêm ứng suất uốn. Vì vậy nên lây sơ măt xích là sớ chẵn.

Bước xích t là thông số chủ yếu của xích truyển động. Các kich thược chính của xich được quy định theo bước xích. Trong bảng 12.1 cho mợt só thông só của các cõ̃ xích con lăn (Liên Xô cũ) có bước $\mathrm{t}=12,7 \div 50,8 \mathrm{~mm}$.

Hinh 12.4
Bảng 12.1
Xich con làn (Lien Xó cū)

Cõ xich	Bước xich t ,	Đường kinh con lăn D	Đường kinh chốt d_{o}	Khoảng cách má trong, b	$\begin{aligned} & \text { Tải trọng } \\ & \text { phá } \\ & \text { hóng, } \mathrm{N} \end{aligned}$	Khói lượng 1 mét xich, kg
	mm					
ПР-12,7-9000-2	12,700	7,75	3,66	3,30	9000	0,35
IIP - 12,7-18000-1	12,700	8,51	4,45	5,40	18000	0,65
IIP - 12,7-1800-2	12,700	8,51	4,45	7,75	18000	0,75
ПР-15,875-23000-1	15,875	10,16	5,08	6,48	23000	0,80
ПР - 15,875-23000-2	15,875	10,16	5,08	9,65	23000	1,00
IIP - 19,05-32000	19,050	11,91	5,96	12,70	32000	1,52
ПР - 25,4-56700	25,400	15,88	7,95	15,88	56700	2,57
ПР - 31,75-88500	31,750	19,05	9,55	19,05	88500	3,73
ПР - 38,1-127000	38,100	22,23	11,12	22,23	127000	5,50
ПР - 44,45-172400	44,450	25,40	12,72	25,40	172400	7,50
ПР - 50,8-226800	50,800	28,58	14,29	31,75	226800	9,70

Khi tải trọng lớn, vận tớc cao, để khỏi phải chọn bước xîch quá lớn, gây nên những va đập mạnh cơ hại, người ta dùng xích nhiếu dãy (2 dãy, 3 dãy). Cấu tạo của xích nhiêu dãy cūng tương tự như xích 1 dãy, chi trừ chiếu dài chớt được tăng thêm. Tải trọng phá hỏng và cỡng suất truyển của xích tỷ lệ thuận với só dãy.

Trong các máy xây dựng hoặc máy làm đường, bộ truyến làm việc có tải trọng động, va đập hoạ̣c quay hai chiếu, người ta dùng xích con lăn có má cong, gồm các mắt xich có hình dạng như các mắt chuyễn. Do má xích cong cho nên độ dài của xich tăng lên, làm tăng khả năng chịu tải trọng đợng.

Xích ống cá̛u tạo giơng như xích con lăn nhưng không cơ con lăn. Giá thành ché tạo rè hơn khới lượng xích cûng nhó hon, nhưng xích và râng đía chơng mòn, do đó tưong á̛i it dùng.

Xích răng (hình 12.5) gồm nhiếu má xich 1 và 2 liên kết với nhau, bàng các chớt hình quạt lăng trụ. Các má xích 1 là má làm việc, mới má có hai rãng và hai lỡ định hình để xuyên chớt. Các má xích 2 không có răng, có tác dụng dẫn hưỡg, giữ cho xích khơng bị dịch chuyển khỏi đía khi làm việc. Bê mặt lâm việc của môi má xích là hai mật phía ngoài, có dạng mặt phảng. Các bé mặt này sẽ tỳ lên hai răng của dia xich (hinh 12.6a).

Hinh 12.6
Mặt làm việc của các chớt là các mật cong lối (hình 12.6 b), khi các má xích xoay đơi với nhau, các chớt sẽ lăn không trượt, nhờ đó bản lé đơ mòn. Xích răng có khả năng tải cao hơn xich con lăn, làm việc êm và it ôn hơn, song chế tạo phức tạp và khới lượng nặng hơn, do đó lt dùng.

Bảng 12.2 cho một sơ thông sơ của xích răng (Liên Xo cũ) (các ký hiệu kích thước xem hình 12.5). Cương đợ tải trọng phá hỏng, là tải trọng phá hỏng xich có chiêu rộng 1 mm , được tính bằng N / mm.

Báng 12.2
Xích răng (Liên Xó cua) (bản le ma sât lan)

Xich có bướ t , mm	Chiesu rộng xich B, mm	$\begin{gathered} \mathrm{b} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{b}_{1} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{s} \\ \mathrm{~mm} \end{gathered}$	Cường dọ tai trọng phá hỏng (đбi vói 1 mm chiếu rộng xich) N / mm	Khới lượng 1 mét xích có chiéu rợng 1 cm , $\mathrm{q}_{\mathrm{m}}, \mathrm{kg}$
12,700	22,5-52,5 (tăng từng 6 mm)	13,4	7,0	1,5	10000	0,58
15,875	$30-70$ (tång từng 8 mm)	16,7	8,7	2,0	12500	0,72
19,050	$45-93$ (tång tùng 12 mm)	20,1	10,5	3,0	15000	0,86
19,050	57-105 (tăng từng 12 mm)	26,7	14,0	3,0	20000	1,14
31,750	69-117 (tăng từng 12 mm)	33,4	17,5	3,0	25000	1,45

12.2.2. Día xích

Đla xich có hỉnh dạng kết cấu tương tự như bánh râng. Hình dạng kich thươc profin răng dược quy định theo tieu chuân.

Hinh 12.7
Prôfin răng dila xich con lăn góm các doạn cong dinh răng $A B$ bán kinh R_{1}, đoạn thàng BC chuyền tiêp, cung CD cơ bán kinh R và rãnh bán kính r (hinh 12.7). Chieu rộng b của vành răng được lấy hơi nhỏ hon khoảng cách b_{1} giữa hai má trong. Prôfin răng dia xich co hinh thang (hinh 12,6a).

Dia xich co dương kinh nho được ché tạo

Hinh 12.8 bàng dập (hỉnh 12.8a). Dia xich đường kính trung blinh và lớn được chê tạo riêng mayo và vành răng rơi ghép lại bầng hàn (hinh 12.8 b) hoạc bulông (hinh 12.8 c) v.v...

12.2.3. Vạt liệu xích và día xích

Má xich thương đự̛̣c làm bằng thêp cán nguọi, hàm lự̛̣ng các bon trung bình hoặc thép hợp kim cán nguội : thép 45, 50, 40X, 40XH (Liên Xố cū) v.v... tôi có độ rán $40 \div 50 \mathrm{HRC}$. Vật liẹu làm bản lê (chớt, ơng, con lăn) thường là thép 15,20 , $15 \mathrm{X}, 20 \mathrm{X}, 12 \mathrm{XH} 3 \mathrm{~A}$ v.v... thắm than rới tồi đạt độ rấn $50 \div 65 \mathrm{HRC}$.

Đới với nhừng đỉa xich chịu tải trọng nhỏ, vận tớc thấp ($\mathrm{v}<3 \mathrm{~m} / \mathrm{s}$) cơ thé ché tạo bầng gang $\mathrm{C} Y 20$ hoạc gang cơ độ bến cao hơn và tôi. Trường họp tải trọng và vận tớc cao hơn, đỉa xich được ché tạo bà̀ng thêp các bon hoạc thép họp kim như thép $45,40 \mathrm{X}, 40 \mathrm{XH}$ tôi hoạ̣c thép $15,20,12 \mathrm{X} 2 \mathrm{H} 4 \mathrm{~A}$ v.v... thấm than và tôi với chiêu sâu lớp thâm toi $1 \div 1,5 \mathrm{~mm}$. Độ rán bé mặt răng $50 \div 60 \mathrm{HRC}$.

12.3. CÁC THÓNG só HìNH HỌC CHÍNH

12.3.1. Bước xích t là thông so cơ bản của bọ truyên xích. Xich có bưóc càng lón thi khả năng tải trọng càng lớn nhựng tải trọng động, va đập và tiéng ồn càng tảng, nhất là khi vận tớc càng cao. Do đơ khi xich làm việc vơi vện tớc cao, nên chọn bước xich nhỏ và nêu cấn thl tăng sơ dây xich (đới va̛i xich con lăn) hoạc tăng chiếu rộng xích (đơi với xich răng) đé xích cơ đủ khả năng tải. Bảng 12.3 cho trị só vòng quay giới hạn $\mathrm{n}_{1 \mathrm{~g}}(\mathrm{vg} / \mathrm{ph})$ của đĩa xich dā̃n (xích 1 dây), phụ thuộc số rãng đĩa dăn Z_{1} và bưóc xich t.

Bảng 12.3
Só vòng quay giơi hạn $n_{1 g}(\mathrm{vg} / \mathrm{ph})$ của đĩa xich dẫn

Z_{1}	$\mathrm{n}_{1 \mathrm{~g}}, \mathrm{vg} / \mathrm{ph}, \mathrm{khi}$ bước xich t, mm							
	12,7	15,875	19,05	25,4	31,75	38,1	44,45	50,8
	Xích con lan							
20	2780	2000	1520	1000	725	540	430	350
25	2900	2070	1580	1030	750	560	445	365
30	3000	2150	1640	1070	780	580	460	375
	Xfch răng							
17-35	3300	2650	2200	1650	1300	-	-	-

12.3.2. Dường kính và so răng día xích

Đường kính vòng chia (hỉnh 12.6 và 12.7) của dĩa xích dẫn d_{1} và của đĩa bị dān d_{2} tinh theo công thức.

$$
\begin{equation*}
\mathrm{d}_{1}=\frac{\mathrm{t}}{\sin \left(\pi / \mathrm{Z}_{1}\right)} \quad \mathrm{d}_{2}=\frac{\mathrm{t}}{\sin \left(\pi / \mathrm{Z}_{2}\right)} \tag{12-1}
\end{equation*}
$$

Z_{1} và $Z_{2}-s$ róng đăa dẫn và đîa bị dẫn.
Bộ truyên xích thường được dùng đê giảm tớc độ, do đó sơ răng đia dẫn Z_{1} nhỏ hơn số rång đỉa bị dā̃n Z_{2}. Nêu só răng càng it, gơc quay tương đói của bân lê khi xich vào đía và ra khải đla (bàng $2 \pi / Z$) cảng lớn, xích sẽ mòn càng nhanh. Mặt khác va đập của mắt xich khi tiếp xúc với răng đĩa cũng tăng lên và xich làm việc càng
ơn. Do đớ cần hạn chế so răng nhỏ nhá̛t $Z_{1 \text { min }}$ của đĩa dẫ. Trên co sở thực nghiệm ngươi ta lấy $Z_{1 \text { min }} \geqslant 19 \mathrm{khi}$ vận tớc xich $v>2 \mathrm{~m} / \mathrm{s}$. Trong các bộ truyên có vạn tớc $\mathrm{v}<2 \mathrm{~m} / \mathrm{s}$ cơ thế láy $\mathrm{Z}_{1 \min }=13+15$. Đơi vơi cac bô truyên chịu tải trọng va đập nên lây $Z_{1 \text { min }} \geqslant 23$. Để bảo đảm cho bọ truyên xich làm việc lâu dài, í ốn, trong trương hợp vận tớc trung binh va cao nên láy $Z_{1}=29-2 u \geqslant 19$ và nên quy tròn

Hinh 12.9 của đỉa xich râng lây tăng $20 \div 30 \%$ so với các trị sơ trên đây.

Só răng đīa lớn (dĩa bị dẫn) $\mathrm{Z}_{2}=u \mathrm{Z}_{1}$, nhựng không nen láy vượt quá trị so giới hạn $\mathrm{Z}_{2 \max } \leqslant 100 \div 120$ đơi với xích con lăn và $\mathrm{Z}_{2 \max } \leqslant 120 \div 140$ đơi vá̛i xich răng. Sở dỉ có sự giới hạn này vì sau một thời gian làm việc, xích sẽ bi mòn, bước xích sê tăng thêm 1 lượng là Δt. Khi ăn khớp với răng đĩa, các mát xích. sê có vị trí ở xa tam đía hon so với vị tri ban đâu. khi xich chưa bị mòn. Nơi cách khác, đường kinh vòng tròn đi qua tâm các bán lê xich sẽ lớn hơ đường kính vòng chia (hình 12.9) một trị s $\delta \Delta \mathrm{d}$, suy từ công thức (12-1)

$$
\begin{equation*}
\Delta \mathrm{d}=\frac{\Delta \mathrm{t}}{\sin (\pi / Z)} \tag{12-1}
\end{equation*}
$$

Rơ ràng là với xích đa̛ mòn, độ tãng bước xich là Δt. Nêu só răng dia xích Z càng lơn thì Δd càng lơn, xích càng dễ tuột khỏi đỉa. Sơ răng Z_{2} cūng nên là so lê, như vậy với sơ mất xích chăn, các bản lế và răng đía sê mòn đêu hon.
12.3.3. Khoảng cách trục a (hinh 12.1) cũng cơ ánh hương đên khả nãng làm việc của bọ truyên xích. Nêu khoảng cách trục a nhỏ, tân sợ chịu tải của các bản lê tãng lên. Ngoài ra, gớc àm của xich trên đia nhỏ α_{1} càng giảm nếu giảm khoảng cách trục a. Khoàng cách nho nhất $a_{\text {min }}$ giữa hai trục dila xích đượe định theo điêu kiẹn góc ôm tren đia nhỏ $\alpha_{1} \geqslant 120^{\circ}$ và hai đia xích không chạm nhau.

Gớc om tren đia nhơ dược tính theo cong thức

$$
\begin{equation*}
\alpha_{1}=180^{\circ}-\frac{d_{2}-d_{1}}{a} \cdot 57^{\circ} \tag{12-2}
\end{equation*}
$$

Đê thỏa mãn điêu kiẹn $\alpha_{1} \geqslant 120^{\circ}$, từ công thức (12-2) ta định được $a_{\text {min }}$

$$
a_{\min } \geqslant d_{2}-d_{1}
$$

Diêu kiẹn đế hai dia xich không chạm nhau

$$
a_{\min } \geqslant 0,5\left(d_{a_{1}}+d_{a_{2}}\right)+(30 \div 50) \mathrm{mm}
$$

trong đo : $d_{a_{1}}$ và $d_{a_{2}}$ - đường kinh vòng đỉnh rãng dia dẫn và dila bị dân.
Nêu khoảng cách trục a lớn quá xich sẽ chong bị chụng (vi só mât xích sẽ nhiêu, với độ tảng bước xich $\Delta \mathrm{t}$ tưong đơi nhỏ cüng làm xich dài thêm nhiéu), khi làm viẹc bị rung nhiếu. Do đớ cũng cấn hạn chê khoảng cách trục tơi đa $a_{\max } \leqslant 80 \mathrm{t}$.

Thực tể cho thấy khoảng cách trục nên lây $a=(30 \div 50)$ t. Khi đả định được khoảng cách trục a, có thê tlm được chiéu dài xich $L=X . t ; X-s \delta$ mát xích, tính theo cong thức.

$$
\begin{equation*}
X \approx 0,5\left(Z_{1}+Z_{2}\right)+2 a / t+0,25\left(Z_{2}-Z_{1}\right)^{2} t /\left(\pi^{2} / a\right) \tag{12-3}
\end{equation*}
$$

X tính được cẩn qui tròn theo sơ nguyên gần đơ và nên láy sơ chản để tránh dùng mât chuyến. Sau đó tính chinh xác khoảng cách trục
$a=0,25 t\left[X-0,5\left(Z_{1}+Z_{2}\right)+\sqrt{\left[X-0,5\left(Z_{1}+Z_{2}\right)\right]^{2}-2\left[\left(Z_{2}-Z_{1}\right) / \pi\right]^{2}}\right]$
Đê nhânh xích bị dā̃ cơ đô chùng bình thừ̀ng cần rút bát khoảng cách trục a tính được theo (12-4) một lự̛̣ng $\Delta \mathrm{a}=(0,002+0,004) \mathrm{a}$ đơi với các bệ truyên xích khong - điêu chingh được khoảng cách trục. Nêu bộ truyên xich đật nghiêng 1 gơc $\psi>70^{\circ}$ so vơi đường nàm ngang (hình 12.1) thì khơng cân giám bót a ($\Delta a=0$).

12.4. CO HỌC TRUYềN DÔNG XÍCH

12.4.1. Vạn tóc và tỷ só truyên

Vận tơc (trung bình) của xích

$$
\begin{equation*}
v=\frac{\mathrm{nZt}}{60.1000} \mathrm{~m} / \mathrm{s} \tag{12-5}
\end{equation*}
$$

trong đó Z, n - số răng và số vòng quay trong 1 phút của đĩa xích (đỉa dẫn hoạ̣c đia bị dān) ; t - bước xich, mm.

Vận tớc của xich càng tăng thì xich càng chơng mòn, tải trọng đợng tăng lên và xich làm việc càng ốn. Thường lấy vạn tớc xích không quá $15 \mathrm{~m} / \mathrm{s}$. Từ thực nghiệm người ta qui định só vòng quay gới hạn n_{lg} của đỉa xích dẫn theo bảng 12.3 .

Tỷ sơ truyên được xác định từ điếu kiện vận tớc vòng (trung bình) của hai đỉa bằng nhau (bà̀ng vận tớe xich).

$$
\begin{equation*}
\mathrm{n}_{1} \mathrm{Z}_{1} \mathrm{t}=\mathrm{n}_{2} \mathrm{Z}_{2} \mathrm{t} \tag{12-6}
\end{equation*}
$$

Do đo $u=n_{1} / n_{2}=Z_{2} / Z_{1}$
Tỷ só truyên u tim được trên đay là tỷ so truyên trung binh. Thự ra vạn tơe của xích và tỷ so truyên thay đ ${ }^{\circ} \mathrm{i}$ theo thòi gian. Do các mát xich an khơp vơi cac răng đila theo hilnh đa giac cho nên ngay cá khi dia dān quay dêu với vận tớc goc ω_{1} thì xich vẫn chuyễn đọng khơng đêu va̛i vạn tóc thay doi từ $v_{\text {max }}$ đén $v_{\text {min }}$ (hinh 12.10a và c). Vận tớc tuyẹt dói cua bán lê xích được chia làm hai thành phần : thành phần có phương dọc theo xích là vạn tóc v_{x} của xich và thành phần vuoung góc với xích v_{n} (hình 12.10b).

Hinh 12.10

$$
\begin{aligned}
& v_{x}=0,5 \omega_{1} d_{1} \cos \alpha_{1}=v_{\max } \cos \alpha_{1} ; \\
& v_{n}=v_{\max }^{\sin \alpha_{1}}
\end{aligned}
$$

Góc α_{1} thay đơi trong khoàng từ $-\varphi_{1} / 2$ dén $+\varphi_{1} / 2 ; \varphi_{1} / 2=\pi / Z_{1}$. Vạn tớc xích có trị so lơn nhát khi $\alpha_{1}=0, v_{x}=v_{\max }=0,5 \omega_{1} \mathrm{~d}_{1}$ và co trị so nhó nhăt $\mathrm{v}_{\mathrm{x}}=\mathrm{v}_{\min }=$ $0,5 \omega_{1} \mathrm{~d}_{1} \cos \left(\varphi_{1} / 2\right)$ khi $\alpha_{1}= \pm \varphi_{1} / 2$. Với cách xem xét tương tự như trên, ta có vện toc gớc của đỉa xich bị dấn

$$
\begin{equation*}
\omega_{2}=v_{x} /\left(0,5 d_{2} \cos \alpha\right)=\omega_{1} d_{1} \cos \alpha_{1} / d_{2} \cos \alpha \tag{12-7}
\end{equation*}
$$

trong đó góc α thay đới trong khoàng $-\varphi_{2} / 2 \leqslant \alpha \leqslant+\varphi_{2} / 2 ; \varphi_{2} / 2=\pi / z_{2}$. Hinh 12.10 d trinh bày đớ thị vận tớc x ich v_{x} và gia tớc a_{x} của xich.
 bị dăn chuyễn đọng không đêu cho dù đia dẩn quay đêu.

Tỷ so truyên tức thơi

$$
\begin{equation*}
\mathrm{u}_{\mathrm{tt}}=\mathrm{d}_{2} \cos \alpha / \mathrm{d}_{1} \cos \alpha_{1} \tag{12-8}
\end{equation*}
$$

Có thẻ̛ giảm bơt sự chuyên đợng khong đêu của đla bị dẫn bằng cách tăng só răng đila xích, đế cho khoảng biến thiên của các gớc α_{1} và α nhò đi và $\cos \alpha_{1}, \cos \alpha$ càng gần tơi 1 . Vi so râng dia dān (đỉa nhô) ft cho nên tãng Z_{1} có tác dụng lớn hơn.

12.4.2. Tải trọng dọng và va dạp trong truyên dông xich

Trong truyến đọng xich, do vận tớc của xich và dia bị dā̃n thay đới cho nên sinh
 thời gian, nghia là chuyển động với gia tớc a_{x}, sê sinh ra tải trọng động (lực quán tính). Tai trọng đông là cực đại khi gia tơc đạt trị só cực đại ($a_{x}=a_{x m a x}$)

$$
\bar{F}_{\mathrm{d}}=\mathrm{ma}_{\mathrm{xmax}}
$$

 a - khoảng cách giữa hai trục đla xích, mét.

Nghiên cứu cho thấy gia tợc xich cực đại khi mât xich bá̛t đâu vào khớp với răng đǐa dẫn, lúc này $a_{x m a x}=\frac{\omega_{1}^{2} t}{2}$
t - bước xich.
Ta tim dược

$$
\begin{equation*}
F_{\alpha}=\frac{q_{m} \cdot n_{1}^{2} t}{180000} \tag{12-9}
\end{equation*}
$$

Hinh 12.11
trong đó F_{d} tính bầng $\mathrm{N} ; \mathrm{a}-\mathrm{mét} ; \mathrm{q}_{\mathrm{m}}-\mathrm{kg} / \mathrm{m}$; $\mathrm{n}_{1}-\mathrm{vg} / \mathrm{ph} ; \mathrm{t}-\mathrm{mm}$. Cong thức (12-9) cho thay khi tăng bước xích và tẫn so quay của đỉa dẫn, tadi trọng đờng F_{d} sê tăng len.

Va đập giữa bản le xích vđi răng đĩa sinh ra khi bàn lê vào khơp vạ̛i răng đỉa vơi nhūng vận tớc khác nhau. Tại thò̀ điếm vào khơp, bản lé B có vận tớc là $\overrightarrow{\mathrm{v}}_{\mathrm{B}}=\overrightarrow{\mathrm{v}}_{\mathrm{A}}$, có phưong vuông góc vđi bán kinh OA (hinh 12.11), còn vận tơc của râng C là \vec{v}_{C} có phương vuông goce vơi OC. Dộng nàng va đạp tăng lên khi tăng bước xích và tần so quay của đīa dā̄n.

Va đập và tải trọng động ảnh hưởng lớn đơn khả năng làm việc và tuối thẹ của bộ truyến xích, gây nhiếu tiêng ôn. Vi vậy cẫn hạn chê só vòng quay n_{1} của dla dấn (bầng 12.3) và không nên lấy bước xích t lớn quá.

12.4.3. Lực tác dụng trong truyền dộng xích

Khi chưa làm viẹc bộ truyên xích chịu lực căng ban đầu F_{o} do trọng lượng bản thân xích gây nên. Lực căng ban đâu được tính theo công thức gân đúng

$$
\begin{equation*}
F_{0}=g q_{m} \mathrm{a}^{2} /(8 y)=g q_{\mathrm{m}} \mathrm{a}\left(1+5 \cos ^{2} \psi\right) \tag{12-10}
\end{equation*}
$$

trong đó q_{m} - khối lượng 1 mét xích ; a - khoảng cách giữa hai trục ; y - độ vông của xích (hình 12.1) ; ψ - gớ nghiêng của đường nơi hai tâm đĩa xich (hình 12.1) ; $\mathrm{g} \approx 10 \mathrm{~m} / \mathrm{s}^{2}$ - gia tơc trọng trương.

Dộ vỡng của nhánh bị dẫn cấn được lấy vừa phạị đê bộ truyến làm việc tương đơi êm và it mòn bản lể: Khi gơc nghiêng của bọ truyến $\psi \leqslant 40^{\circ}$ nên lây y $=0,02 \mathrm{a}$ và khi $\psi>40^{\circ}$ lấy $\mathrm{y}=(0,015 \div 0,01) \mathrm{a}$, trị so nhỏ dùng khi ψ lơn.

Trong tính toan thực té co thé lay

$$
F_{o} \approx k_{y} q_{m}^{a}
$$

trong đơ $\mathrm{k}_{\mathrm{y}}=60 \mathrm{khi}$ bọ truyến nàm ngang và $\mathrm{y} \approx 0,02 \mathrm{a}$; nêu góc nghiêng của bọ truyen $\psi>40^{\circ}$ láy $\mathrm{k}_{\mathrm{y}}=40+20$, trị so nhỏ khi ψ lơn và $\mathrm{k}_{\mathrm{y}}=10 \mathrm{khi} \psi=90^{\circ}$.

Khi bộ truyên làm việc lực vòng F_{t} dược truyên từ răng đia dẫn qua các mất xích nhánh dẫn, từ các mất xích này lên các rậng đía bị dẫn :

$$
\begin{equation*}
F_{t}=1000 \mathcal{R} / v=6.10^{7} \mathcal{R}(\text { Znt }), \mathrm{N} \tag{12-12}
\end{equation*}
$$

với \mathcal{R} - cong sư̂t, kW, v - vận tớc xich, $\mathrm{m} / \mathrm{s} ; \mathrm{t}$ - bưóc xích, mm; Z, n - só răng và só vòng quay trong 1 phút của đĩa xích. Nêu cho trước trị só mômen xoán T_{1} trên trục dấn và d_{1} là đường kinh vòng chia của đla dăn ta có :

$$
\begin{equation*}
F_{t}=2 T_{1} / d_{1}=F_{1}-F_{2} \tag{12-13}
\end{equation*}
$$

trong đó F_{1} và F_{2} - lực tác dụng lên nhánh xích dẫn và nhánh xich bị dẫn (hình 12.12a).

Khi các mắt xích chạy vòng qua đỉa xich vơi vận tớc v sẽ sinh ra lực ly tâm. Giả sử phân tó xích có khơi lượng dm, lự ly tâm sê là (hình 12.12).

$$
d F_{I t}=d_{m} \cdot \frac{d}{2} \omega^{2}=d_{m} \frac{2 v^{2}}{d}
$$

Lực ly tam $\mathrm{dF}_{\mathrm{lt}}$ gây nên lực căng phụ F_{v} trong xích. Từ điêu kiện cân băng phân to xich (hinh 12-12b).

$$
\mathrm{dF}_{\mathrm{lt}}=2 \mathrm{~F}_{\mathrm{v}} \sin \frac{\mathrm{~d} \alpha}{2} \approx \mathrm{~F}_{\mathrm{v}} \mathrm{~d} \alpha
$$

Do đठ

$$
F_{v}=d_{m} \frac{2 v^{2}}{d d \alpha}
$$

Vn $\mathrm{d}_{\mathrm{m}}=\rho \mathrm{A} \frac{\mathrm{d}}{2} \mathrm{~d} \alpha ; \rho-\mathrm{kh} \sigma i$ lượng rieng ;
A - diện tich tiết diện ngang (trung blnh)

b) của xich, cho nên

$$
\begin{equation*}
F_{v}=\rho A v^{2}=q_{m} v^{2} \tag{12-14}
\end{equation*}
$$

[^0]trong đó $\mathrm{q}_{\mathrm{m}}=\rho \mathrm{A}-\mathrm{kh}$ ©i lượng 1 mét xich. Lực F_{v} tính bàng Niutơn (N) ; vận tớc $\mathrm{v}-\mathrm{m} / \mathrm{s}$.
Ta cơ lực tác dụng lên nhánh xích dẫn F_{1} và nhánh xích bị dẫn F_{2} bằng :
\[

$$
\begin{equation*}
F_{1}=F_{1}+F_{2} ; F_{2}=F_{o}+F_{v} \tag{12-15}
\end{equation*}
$$

\]

Lực tác dụng lên trục đīa xich F_{r} do lực vòng F_{t} vâ trộng lượng xich gây nên, được tinh gẩn đúng theo công thức

$$
\begin{equation*}
F_{r}=k_{t} \cdot F_{t}=k_{t} \cdot 6 \cdot 10^{7} \mathcal{R}_{(}(\mathrm{Znt}) \tag{12-16}
\end{equation*}
$$

trong đơ $\mathbf{k}_{\mathbf{t}}$ - hệ sơ xét đên tác dụng của trọng lượng xich lên trục, khi bộ truyến nằm ngang $k_{t}=1,15$; khi bọ truyên thả̉ng đứng $k_{t}=1,05 ; \mathrm{Z}$ và $\mathrm{n}-\mathrm{s} \delta$ răng và so vòng quay trong 1 phứt của đīa dâ̄n (hoạ̃c đỉa bị dẫn) ; \mathcal{R} - cồng suất của bộ truyên, kW.

12.5. TÍNH TRUYÊN DÔNG XÍC̀H

12.5.1. Các dạng hơng

Trong bợ truyên xich có thê xảy ra các dạng hỏng sau :

- Mòn bản lề xích do khi làm việc các bản lê chịu áp suất (úng suất tiếp xúc) lớn và có sự xoay tương đới (giữa chớt 4 với ơng 3). Bản lé bị mòn khiơn bước xich t tăng lên, xich àn khớp không chính xác với răng đīa. Nêu bản lế bị mòn quá nhiêu, bộ truyến sē không làm việc được vì xich thường xuyên tuột khỏi đỉa hoạ̣c xích sẽ bị đứt (do môn làm yếu các mắt xích). Đề giảm mòn cân bôi trơn xich và hạn chê áp suât trong bản le xich.
- Các phấn tử xích bi hỏng do mỏi, dăn đến xích bị đứt, con lăn bị rơ hoạc vỡ. Xích bị hỏng vì mỏi do tác dụng của ứng suât thay đởi gây nên bởi tải trọng làm viẹc, tải trọng động hoặc va đạp. Hiện tự̂ng hỏng vi mỏi thường chil xảy ra đơi với các bộ truyen xich chịu tâi trọng lơn, vân tớc cao, làm viẹc trong các hộp kin (aược boi trơn tớt nên it mon).

Ngoài ra do chât lự̆ng ché tạo không tớt hoạ̣c do làm việc với vạn tốc $\mathrm{v}>15 \mathrm{~m} / \mathrm{s}$ bơ truyên chịu tải trọng va đệp lơn má xich cơ thé bị long, con lăn bị vỡ.

Trong các dạng hỏng trên, mòn bản lê là dạng hờng chủ yêu của bộ truyên xích.

12.5.2. Tính bố truyến xích con lăn

Thực nghiệm chựng tỏ̉ rầng áp suất trong bản lế xich là một trong các nhân tớ chủ yấu quyớt định tuỡi thọ (độ bến mòn) của xich. Xich cơ the lảm việc trong thời gian tương dỡi lâu nêu như áp suất p sinh ra trong bản lê nhỏ hơn áp suất cho phép [p]

$$
\begin{equation*}
p=\frac{K \cdot F_{t}}{A \cdot K_{x}} \leqslant[p] \tag{12-17}
\end{equation*}
$$

trong đó F_{t} - lực vòng ;
$\mathrm{A}=\mathrm{d}_{\mathrm{o}} \mathrm{b}_{\mathrm{o}}$ - diện tích tinh toán cưa bản lé xích 1 dãy; d_{o} - đường kính chớt; b_{o} chiêu dài ơng (hình 12.3) ; cơ thé lây $\mathrm{A} \approx 0,28 \mathrm{t}^{2}$; t - bước xích. K - hệ sớ điêu kiệ̣n sử dụng xích.

$$
\begin{equation*}
K=K_{d} \cdot K_{a} \cdot K_{o} \cdot K_{d c} \cdot K_{b} \tag{12-18}
\end{equation*}
$$

K_{d} - hệ số tải trọng động, nêuu dẫn động bầng động cơ điẹn và tải trọng ngoài tác dụng lên bộ truyên tương đới êm $K_{d}=1$, nếu tải trọng cơ va đập $K_{d}=1,2 \div 1,5$; nêu va đạp mạnh $K_{d}=1,8$;
 trong một đơn vị thời gian càng it, xích sex it mòn hơn (khi các điéu kiện khác như nhau).

Với $a=(30 \div 50) t, K_{a}=1 ; a<25 t, K_{a}=1,25 ; a=(60 \div 80) t, K_{a}=0,8 ;$
K_{o} - hê sơ xêt đến cách bơ trí bọ truyên, nêu bộ truyên đật càng nghieng (so vơi đường nàm ngang) thì độ mòn (hoạ̣c đọ tăng tương đơi của bước xích) cho phép càng giảm vi xích càng dễ tuột. Khi đường nơi hai tâm đia xich làm với đường nàm ngang một gơ nhỏ hơ $60^{\circ}, \mathrm{K}_{\mathrm{o}}=1$; nếu lơn hơn $60^{\circ}, \mathrm{K}_{\mathrm{o}}$ có thế láy tới 1,25 ;
K_{dc} - hệ so xêt đên khả năng điêu chinh lực căng xích, néu trục cơ thể điêu chinh được $\mathrm{K}_{\text {dec }}=1$, nêu dùng đia căng xích hoạc con lăn căng xich $\mathrm{K}_{\mathrm{dc}}=1,1$; nêu trục không điếu chinh được và cũng không cơ bộ phạn căng xich $\mathrm{K}_{\mathrm{dc}}=1,25$;
K_{b} - hệ so xét đến điêuu kiện bôi trơn, nếu bôi trơn liên tục (xích nhúng dẫu hoặc được phun dầu liên tục) $\mathrm{K}_{\mathrm{b}}=0,8$, nếu bôi trơn nhò giọt $\mathrm{K}_{\mathrm{b}}=1$, néu bôi trơn địn kỳ (bôi trơn gián đoạn) $\mathrm{K}_{\mathrm{b}}=1,5$;
$\mathrm{K}_{\mathrm{x}}-\mathrm{hệ}$ sб x xét đến so dăy xích x , vớ $\mathrm{x}=1 ; 2 ; 3 ; 4$ thl $\mathrm{K}_{\mathrm{x}}=1 ; 1,7 ; 2,5$; 3 tưong ửng.

Trị só áp suất cho phép [p] theo điêu kiện bến mòn của xích cho trong bảng 12.4 .
Công thức (12-17) được dùng đế chọn xich. Chọn một trị so bước xich t và lấy só răng đila xich nhở Z_{1} theo hương dẫn trong mục 12.3 .2 rơi tính áp suãt p và so sánh vơi áp sữt [p] cho phêp. Nêu không phù họp thì chọn và tính lại.

Bảng 12.4
Ạ́p suatt cho phép [p] vé bên mòn cùa xich

t, mm	[p], MPa, khi $\mathrm{n}_{1}, \mathrm{vg} / \mathrm{ph}$								
	<50	200	400	600	800	1000	1200	1600	2800
	Xich con lăn								
12,7-15,875	35	31,5	28,5	26	24	22,5	21	18,5	14
19,05-25,4	35	30	26	23,5	21	19	17,5	15	-
31,75-38,1	35	29	24	21	18,5	16,5	15	-	-
44,45-50,8	35	26	21	17,5	15	-	-	-	-
	Xích răng								
12,7-15,875	20	18	16,5	15	14	13	12	10,5	8
19,05-25,4	20	17	15	13	12	11	10	8,5	-
31,75	20	16,5	14	12	10,5	9,5	7	-	-

Co thể biên đơi công thức (12.17) để tinh trực tiêp bưóc xích t . Biêu thị lực vòng $\mathrm{F}_{\mathrm{t}}=2 \mathrm{~T}_{1} / \mathrm{d}_{1} ; \mathrm{T}_{1}=9,55.10^{6} \int \mathrm{R}_{\mathrm{n}_{1}} ; \mathrm{d}_{1} \approx \mathrm{Z}_{1} \mathrm{t} / \pi ; \mathrm{A} \approx 0,28 \mathrm{t}^{2} ; \mathcal{R}$ và n_{1} - công suăt và $\mathrm{s} \delta$ vòng quay trong 1 phút của đila xich dẩn, ta oo công thức tính bươc xích t của xich con lản

$$
\begin{align*}
& t \geqslant 2,82 \sqrt[3]{\frac{T_{1} K}{Z_{1} K_{x}[p]}, \mathrm{mm}} \tag{12-19}\\
& \text { hoạc } t \geqslant 600 \sqrt[3]{\frac{R_{K}}{Z_{1} n_{1} K_{x}[p]}, m m} \tag{12-20}
\end{align*}
$$

Trong các công thức trên T_{1} tính bầng $\mathrm{N} . \mathrm{mm} ; \mathcal{R}-\mathrm{kW} ;[\mathrm{p}]-\mathrm{MPa} ; \mathrm{n}_{1}-\mathrm{vg} / \mathrm{ph}$. Thị sơ áp suât cho phép [p] cơ thé lấy trị sơ trung bình, ứng vđ̛i so vòng quay n_{1} của
đĩa xích dẫn (bảng 12.4), sau khi tính được bước xích t, ta qui tròn theo trị sơ tiêu chuẫ gần nhất và kiếm nghiệm lại áp suất theo công thức (12-17).

Dẻ̛ tinh toán thiét ké xich được thuạn tiện hon, có thê biên đơi điêu kiện (12-17) ra dạng dưới đay. Từ (12-17) ta có

$$
\begin{equation*}
\mathcal{R}=\frac{F_{t} v}{1000} \leqslant \frac{[p] \cdot A \cdot K_{x}}{1000 . K} \cdot \frac{Z_{1} n_{1} t}{60.1000} \tag{12-21}
\end{equation*}
$$

Nhân cả mả̉u só và tử sơ của vé̛ phải bất đả̉ng thức (12-21) với $Z_{o l}$ và $n_{o l}$ và đật

$$
[\mathcal{R}]=\frac{[p] \cdot A \cdot Z_{o 1} \cdot n_{o l} t}{6 \cdot 10^{7}} ; K_{z}=\frac{Z_{o 1}}{Z_{1}} ; K_{n}=\frac{n_{o 1}}{n_{1}}
$$

từ (12-21) co thé viét

$$
\mathcal{R} \leqslant \frac{\left[\mathcal{R} \cdot \mathrm{K}_{\mathrm{x}}\right.}{\mathrm{K} \cdot \mathrm{~K}_{\mathrm{z}} \cdot \mathrm{~K}_{\mathrm{n}}}
$$

hoặc

$$
\begin{equation*}
\mathcal{R}_{\mathrm{i}}=\frac{\mathrm{K} \cdot \mathrm{~K}_{\mathrm{z}} \cdot \mathrm{~K}_{\mathrm{n}} \cdot \mathcal{R}}{\mathrm{~K}_{\mathrm{x}}} \leqslant[\mathcal{R}] \tag{12-22}
\end{equation*}
$$

trong đơ \mathcal{R} - công tinh toán, $[\mathcal{R}]$ - cồng suât cho phép của bộ truyên xich một dãy (Liên Xô cū) có bước t , số răng đỉa dẫn $\mathrm{Z}_{\mathrm{o} 1}=25$ và so vòng quay đỉa dẫn n_{ol}, cho trong bảng 12.5. Khi sử dụng các sơ liệu trong bảng 12.5 ta lấy $\mathrm{K}_{\mathrm{z}}=25 / \mathrm{Z}_{1} ; \mathrm{K}_{\mathrm{n}}=\mathrm{n}_{\mathrm{ol}} / \mathrm{n}_{\mathrm{l}}$, trị so n_{ol} tùy thuộc viẹc chọn trị sơ [$\left.\mathcal{R}\right]$ theo cột nào trong bảng.

Bàng 12.5
Tri so cong suất cho phép [胥, kW, của bô truyèn xich (vái $Z_{\mathrm{ol}}=25$)

Cơ xich	Bưc xích t, mm	[\mathcal{R}], kW, khi so vòng quay đia nho $\mathrm{n}_{\mathrm{ol}} \mathrm{vg} / \mathrm{ph}$							
		50	200	400	600	800	1000	1200	1600
Xích con lăn 1 day								2,72	3,20
ПP12,7-9000-2	12,7	0,19	0,68	1,23 2,29	1,68 3,13	2,06 3,86	2,42	5,06	3,20 5,95
IIP 12,7-18000-1 TP12	12,7 12,7	0,35 0,45	1,27 1,61	$1,2,29$ 2,91	3,13 3,98	3,86 4,90	4,52 5,74	5,06 6,43	7,95
ПР12,7-18000-2* ПР15875-23000-1	12,7 15,875	0,45 0,57	1,61 2,06	2,91 3,72	3,98 $\mathbf{5 , 0 8}$	4,90 $\mathbf{6 , 2 6}$	6,74 7,34	6,43 8,22	9,65
ПР15,875-23000-1 ПР15;875-23000-2	15,875	0,75	2,70	4,88	6,67	8,22	9,63	10,8	12,7
ПР19,05-32000**	19,05	1,41	4,80	8,38	11,4	13,5	15,3	16,9	19,3
ПР25,4-56700*.	25,4	3,20	11,0	19,0	25,7	30,7	34,7	38,3	43,8
ПР31,75-88500**	31,75	5,83	19,3	32,0	42,0	49,3	54,9	60,0	-
ПР38,1-127000*	38,1	10,5	34,8	57,7	75,7	88,9	99,2	108	
ПР44,45-172400*	44,45	14,7	43,7	70,6	88,3	101	-	-	-
ПР50,8-226800*	50,8	22,9	68,1	110	138	157	-	-	
Xich rang	12,7	0,13	0,49	0,88	1,23	1,53	1,80	1,97	2,28
Chiêu rông $\mathrm{B}=10$	15,875	0,19	0,69	1,25	1,72	2,15	2,52	2,76	3,20
Chiêu rọng $\mathrm{B}=10$	19,05	0,28	0,98	1,74	2,30	2,79	3,20	3,50	4,00
	25,4	0,46	1,59	2,79	3,70	4,52	5,12	6,60	6,40

Chú thich : Xích có đánh dấu * được chế tạo 1 dây, 2 dãy và 3 dăy

Đơi với xích răng trị số công suất cho phêp cho trong bảng 12.5 ứng với xích cơ chiếu rộng 10 mm . Chiêuu rộng B của xích răng làm việc với công suât \mathcal{R}

$$
\begin{equation*}
\mathrm{B} \geqslant \frac{10 \mathcal{R} \cdot \mathrm{KK}_{\mathrm{z}} \mathrm{~K}_{\mathrm{n}}}{[\mathcal{R}]}, \mathrm{mm} \tag{12-23}
\end{equation*}
$$

Ngoài cách tính xích vé mòn trên đây, người ta còn tính xich theo độ bên mơi, đé tránh xấy ra hỏng vì mỏi các phần tử xich (thường là các má xích). Tính toán tién hành theo phương pháp kiêm nghiẹm hệ sớ an toản vê độ bến mỏi no của má xich tại tiết diện đi qua lô. Vì biên độ ựng suất sinh ra trong tiết diện nguy hiếm má xích cũng tỷ lệ thuận với áp suất trong bản lế xích, cho nên để tính toán được đơn giản, cách tính vé mỏi cũng được quy ve kiểm nghiệm áp suất trong bản le xich, tương tự như tính vê mòn [cơng thức (12-17)], nhưng áp suất cho phép [p] được lây theo điéu kiện đảm bảo độ bến mỏi. Ví dụ đới với má xích con lăn (Liên Xô cū) cơ bướ $\mathrm{t}=15,875$, làm bàng thép 45 trị s $\sigma[\mathrm{p}]^{*}=24 \mathrm{MPa}$.

12.6. TRìNH TU THIÉT KE. THÍ DU

12.6.1. Trình tự thiết ké bộ truyền xich

1. Chọn loại xich

2. Chọn so răng dia nhỏ $\mathrm{Z}_{1}=29-2 u \geqslant 19$, trong đơ $u-$ tỷ só truyến. Tính só răng đia lơn $Z_{2}=u Z_{1}$.
3. Tính bươc xich t . Kiếm nghiệm xem bước xích này có nhơ hơn trị só giới hạn cho trong bảng 12.3 không. Nêu lớn hơn, đơi với xích con lăn phải tăng số dãy xich và giảm bước xich đế điêu kiẹn (12-17) được thỏa mãn, còn đới với xích răng phài tăng chiêu rộng xich B (đê giám bước xich t).
4. Địinh so bọ khoảng cách trục a (nêu a chưa cho trưoć) rơi tính so mất xích X theo cong thức (12-3) và qui tròn X theo so chån gàn nhât. Tinh chính xác khoảng cách trục a theo công thức (12-4). Đé xích không quá căng, cân giâm bớt khoảng cách a đã tính môt lương $\Delta \mathrm{a}=(0,002 \div 0,004)$ a.
5. Tính đương kinh các đỉa xich [theo công thức (12-1)].
6. Tinnh lực tác dụng lên trục [theo cong thức (12-16)].

12.6.2. Thi dy

Thiêt ké bộ truyên xich trong dẫn dộng băng tải, vận tớc đia xich dẵ $\mathrm{n}_{1}=140$ $\mathrm{vg} / \mathrm{ph}$, tyं so truyén $u=2,5$, công sữt $\mathcal{R}=2,5 \mathrm{~kW}$, tài trọng em. Xich nàm nghiêng mồt gớc lơn hon 60° so vói đường nàm ngang, trục đla xich co thế điêu chinh đượ, bôi trơn xich bà̀ng phương pháp nhỏ giọt.

Giải :

1. Chọn loại xích. Vì vận tớc không cao cho nên chọn loại xich con lăn.
2. Chọn so răng đīa nhỏ theo diêu kiện $Z_{1}=29-2 u \geqslant 19$, láy $Z_{1}=25$ râng. Tính só răng đỉa lớn

$$
Z_{2}=u Z_{1}=2,5.25=62,5
$$

Lây $Z_{2}=63$ răng.
Tỷ so truyên thực của bộ truyen xich

$$
\mathrm{u}=\mathrm{Z}_{2} / \mathrm{Z}_{1}=63 / 25=2,52
$$

3. Xác định bước xich t theo công suát tính toán \mathcal{R} [công thức (12-22)] và tra bảng 12.5.

Lây $\mathrm{K}_{\mathrm{d}}=1$ (tải trọng êm) ; $\mathrm{k}_{\mathrm{a}}=1$ (vi lây khoảng cách trục $\mathrm{a} \approx 40 \mathrm{t}$); $\mathrm{K}_{\mathrm{o}}=1,25$ (bợ truyôn có goo nghiêng $\psi>60^{\circ}$) ; $\mathrm{K}_{\mathrm{dc}}=1$ (bợ truyên cơ thề điếu chinh được) ; $K_{b}=1$ (boi tron nhó giọt).

Hệ sơ điêu kiện sử dụng xich [cong thức (12-18)]

$$
\mathrm{K}=1 \cdot 1 \cdot 1,25 \cdot 1 \cdot 1=1,25
$$

Hệ só răng đỉa dān :

$$
\mathrm{K}_{\mathrm{z}}=\mathrm{Z}_{\mathrm{ol}} / \mathrm{Z}_{1}=25 / 25=1
$$

Hê so so vòng quay (láy $\mathrm{n}_{\mathrm{ol}}=200 \mathrm{vg} / \mathrm{ph}$)

$$
\mathrm{K}_{\mathrm{n}}=\mathrm{n}_{\mathrm{ol}} / \mathrm{n}_{1}=200 / 140=1,42
$$

Công suât tính toán

$$
\mathcal{R}_{1}=1,25 \cdot 1 \cdot 1,42 \cdot 2,5=4,44 \mathrm{~kW}
$$

Theo bảng 12.5 (vỡ $\mathrm{n}_{\mathrm{ol}}=200 \mathrm{vg} / \mathrm{ph}$) chọn xich 1 dãy có bước $\mathrm{t}=19,05$ có $\mathrm{ký}$ hiệu ПР $19,05-32000$, công suất cho phêp $[\mathcal{R}]-4,8 \mathrm{~kW}$. Trị só t nhỏ hơn trị số giới hạn (bảng 12.3).
4. Định so bợ khoáng cách trục $a=40 \mathrm{t}=40.19,05=762 \mathrm{~mm}$.

Tính só mắt xích theo cong thức (12-3)

$$
X=0,5(25+63)+2,762 / 19,05+0,25(63-25)^{2} \cdot 19,05 /\left(\pi^{2} \cdot 762\right)=124,9
$$

Láy só mát xich $\mathrm{X}=124$.
Tính chính xác khoảng cách trục a [công thức (12-4)]
$a=0,25 \cdot 19,05\left[124-0,5(25+63)+\sqrt{[124-0,5(25+63)]^{2}-2[(63-25) / \pi]^{2}}\right]=753,2 \mathrm{~mm}$
Để xich khỏi chịu lực câng quá lơn, rút bớt khoảng cách a một lự̛̣g $\Delta a=0,002 a \approx 1,5 \mathrm{~mm}$.

Vậy lấy $a=752 \mathrm{~mm}$.
5. Tính đương kính các đía xích [cong thức (12-1)]

Đường kính đỉa xich dẫn

$$
d_{1}=\frac{19,05}{\sin (\pi / 25)}=152 \mathrm{~mm}
$$

Đường kính đīa xích bị dān

$$
d_{2}=\frac{19,05}{\sin (\pi / 63)}=382 \mathrm{~mm}
$$

6. Tinh lực tác dụng lên trục theo công thức (12-16). Láy hệ so $\mathrm{k}_{\mathrm{t}}=1,1$. Lực vòng [công thự (12-12)]

$$
F_{t}=6.10^{7} .2,5 /(25.140 .19,05)=2250 \mathrm{~N}
$$

Chương 13

TRUYỀN ĐỘNG ĐAI

13.1 KHÁI NIỆM CHUNG

13.1.1. Cấu tạo chính của bộ truyền dai

Bộ truyên đai thường gồm hai bánh đai, (hình 13.1) bánh dẫn 1 và bánh bị dẫn 2, vòng đai 3 má́c căng trên hai bánh đai nhờ bộ phận căng dai 4. Do có ma sát glữa đai và bánh, bánh dẫn quay sẽ truyển chuyển động và cơ năng sang bánh bị dẫn.

Hình 13.1
Theo hình dạng tiết diện đai, đai được chia làm bốn loại : đai dẹt (hình 13.2a) có tiết diện chữ nhật, đai hình thang (hình 13.2 b) có tiết diện hình thang, đai hình lược (hình 13.2 c) và đai tròn (hình 13.2 d). Đai hình lược có cấu tạo gồm nhiểu gân đọc có tiết diện hình thang. Ngoài ra hiện nay còn dùng đai răng (hình 13.2đ), truyển lực

nhờ ăn khốp của đai với các răng trên bánh đai. Dai dẹt và đai hình thang đự̛̣c dùng rộng rải hơn cả, còn đai tròn chí dùng trong những máy cơng suất nhỏ : máy khâu, trong các khf cu v.v...

Thương dùng bọ truyên đai đê truyên chuyên động giữa các trục song song và quay cùng chiêu nhau (hình 13.1). Tuy nhiên, nếu bắt chêo đai (hình 13.3a) bợ truyên có thể truyền chuyển động giữa các trục song song quay ngực chiêu nhau. Nếu bát nửa chéo vòng đai (hình 13.3b) hoạ̣c dùng bánh đai trung gian (hình 13.3c) ta see có các bộ truyên đai truyên chuyên động giữa trục bơ trí chêo gơc hoạ̣c cất nhau. Trong các trường hợp này cạnh đai chơng bị mòn và bánh đai phải khá rộng, do đó it được dùng.

Hinh 13.3

': 13.1.2. Uu nhượe diếm và phạm vi sử dưng

Truyên đọng đai có các ưu diém sau :

- Có khả năng truyên chuyên động và cơ năng giữa các trục ở khá xa nhau.
- Làm viẹc êm, không ôn.
- Giữ được an toàn cho các tiét máy khác khi bị quá tải (lúc này đai sẽ trượt tron trên bánh).
- Két cấu đơn giản, giá thành ré.

Các nhuọc diém của truyén đợng đai :

- Khuơn khơ kich thước khé lơn (khi cùng một điếu kiện lảm việc, thường riêng đường kính bánh đai đă lớn hon đường kính bánh răng khoảng 5 làn).
- Tỷ sơ truyến không ớn định vi có trượt đàn hôi của đai trên bánh.
- Lực tác dụng lên trục và δ lơn do phải căng đai (lực tác dụng lôn trục và 6 tảng thêm khoảng $2 \div 3$ lần so với trong truyên đọng bánh răng).
- Tứi thọ tháp khi làm việc vái vận tớc cao.

Bộ truyên đai thường được dùng đê truyên cồng suá̛t không quá $40 \div 50 \mathrm{~kW}$, vạn tớc thông thường khoảng $5 \div 30 \mathrm{~m} / \mathrm{s}$. Ty só truyên u của truyến động đai dẹt thường không quá 5, đơi với truyến động đai hinh thang $u \leqslant 10$. Bô truyên đai thường được bó trí ơ cấp tớc độ nhanh, bánh dā̃n láp vào trục động cơ (hình 13.1). Trong trường hợp này kích thước bọ truyên tương đơi nhó gẹn.

13.2. CÁC LOẠ DAI VÀ bÁNH dAI

13.2.1. Các loại dai

Vật liệu làm đai phải thỏa mã̃ các yêu cầu như có đủ độ bên mỏi và bến mòn, hẹ số ma sát tương đơi lớn và cơ tính đàn hời cao (mo đun đàn hơi thấp).

Trong các vật liệu tự nhiên, chil có đai da loại tớt là thỏa mẫn các yêu cầu trên. Đơi với đai làm bằng vật liệu tởng hợ, để bảo đảm đai có đủ đọ bên, các lợp chịu
tải trọng chính được làm bầng sợi vài bện hoạ̣c sợi kim loại, bố trí theo mặt trung hòa của đai. Láp vở bọc của đai được làm bảng vật liệu cớ hẹ sơ ma sát cao, chả̉ng hạn như cao su.

Các loại dai dept

Dai da làm việc bên lâu, khả năng tải cao, chịu va đạ̣p tớt. Đai da rất bến mòn nên làm việc tớt trong các bộ truyến chéo. Nhược điếm của đai da là giá đát, không dùng được ờ nơi có axít, ẩm ướt, cho nên hiẹn nay ft dùng.

Đai vải cao su gờm nhiếu lớp vải và cao su đự̛̣c sunfua hơa. Dai vải cao su có đọ bên cao, đàn hơi tơt, ít chịu ảnh hương cưa thay đởi nhiệt đọ và đọ á̛m. Do đó hiẹn nay đai vải cao su được dùng rộng râi, dùng đé truyến tải trọng tương đới ơn định. Không nên cho dầu day vào đai vải cao su vì dễ làm hỏng cao su. Loại đai này không chịu được va đập mạnh.

Đai sợi bông có hai loại : đai dệt dày và đai khâu nhiếu lớp. Đai sợi bông cớ khơi lượng nhơ, giá ré, dùng thích hợp ơ các truyên đợng có vận tớc cao, công suất nhỏ. Đai sợi bông khá mếm nên có thể làm việc với các bánh đai có đường kính nhỏ. Khả năng tải và tưới thọ của đai sợi bông thấp hơn đai da và đai cao su. Không nên dùng đai sợi bông đ̛̉ những nơi ẩm ướt hoạc nhiệt đọ cao.

Dai sợ len chế tạo từ len dệt (sợi ngang là sợi vâi), tấm hốn họ̣p oxyt chì và dâu gai. Đai cơ tính đàn hối khá cao nên cơ thế làm viẹc tớt khi tải trọng không ơn định hoạc cơ va đập và khi bánh đai có đường kinh nhỏ. Dai sợi len it chịu ảnh hường của môi trương (nhiẹt độ, độ ẩm, bụi, axít v. v...) nhưng khả nãng tải kém hơn so với các loại dai khác. Dai sợi len giá đất.

Đai bâng câc loại vât liệu tơng hơp với nến cơ bản là nhựa pôliamft liên két với các lớp sợi tơng hợp là caprôn... có độ bến và tuỡi thọ cao, chịu đượe va đập, có thế làm việc với tớc đọ cao đớn $80 \div 100 \mathrm{~m} / \mathrm{s}$.

Trừ một sơ loại đai dẹt bàng vạt liệu tợng họ̣p đự̛̣c chể tạo sẵn thành vòng kín, còn nơi chung đai dẹt được chế tạo thành những băng dài. Khi dùng, tùy theo khoảng cách trục người ta cât ra và nới đâu đai lại thành vòng đai. Dai đự̛̣ nơi bằng cách dán, khâu hoặc dùng các vật nơi bà̀ng kim loại (dùng các tấm kẹp và bulông v.v...). Chất lự̂ng đầu nơi cơ ảnh hương lơn đên sự làm việc của bộ truyên đai nhất là khi vạn tớc lớn và khoảng cách trục ngán.

Kích thước chiếu rộng b và chiêu dài h của đai dẹt được tiêu chuấn hơa. Bảng 13.1 cho các kích thước tiêu chuân của một sơ loại đai vài cao su của Liên Xô cũ. Chiêu dảy của đai không có các lớp lót bảng cao su xen giữa lớp vài nhỏ hơn so vơi đai có các lơp lót.

Bảng 13.1
Kích thuớc dai vải cao su (Lien Xo cü)

$\begin{gathered} \text { So lop } \\ \text { vaia } \end{gathered}$	Chiêu rộng đai b, mm	Chiéu dày đai h, mm			
		Đai B-800 và 5-820		Dai БКНЛ -65 và БКНЛ 65-2	
		có lớp lot	khong lóp lót	có lóp lót	khong lóp lót
3	20-112	4,5	3,75	3,0	3,0
4	20-250	6,0	5,0	4,8	4,0
5	20-250	7,5	6,25	6,0	5,0
6	8-250	9,0	7,5	7,2	6,0

Một số trị số chiê̂u rộng tiêu chuẩn của đai vải cao su : $20,25,(30), 32,40,50$, $(60), 63,(70), 71,(75), 80,(86), 90,100,112,(115),(120), 125,140,(150),(160)$, (175), 180, 200, 224, (225), 250 (nên tránh dùng các trị số trong ngoạ̣c).

Các kích thước tiêu chuẩn của đai sợi bông (Liên Xô cũ) cho trong bảng 13.2
Bảng 13.2
Kích thuớc dai sợi bông (Liên Xô cũ)

Chiê̂u rộng b, mm	Số lớp	Chiếu dày h , mm
$30,40,50,60,75,90,100$	4	4,5
$30,40,50,60,75,90,100,115,125,150,175$	6	6,5
$50,75,110,115,125,150,175,200,225,250$	8	8,5

Đai hình thang

Cấu tạo của đai hình thang gồm các phần sau (hình 13.4) : lớp sợi xếp hoặc lớp sợi bện 1 chịu kéo, lớp vải cao su 2 bọc quanh đai và lớp cao su 3 chịu nén. Mặt làm việc của đai là hai mặt bên, ép vào rãnh có tiết diện hình thang của bánh đai. Khi đai vòng qua bánh đai, giữa mặt trong của đai và đáy rãnh có khe hở. Nhờ tác dụng chêm của đai vào bánh đai cho nên ma sát giữa đai và bánh đai tăng lên : góc chêm φ của đai hình thang bằng 40°.

Lớp sợi 2 là lớp chịu tải chủ yếu, làm bằng các vật liệu như sợi caprôn, láp xan, viscô v.v... có môđun đàn hồi cao hơn nhiểu so với cao su. Lớp sợi này

Hình 13.4 được bố trí trên mặt trung hòa của đai cho nên không phải chịu ứng suất uốn sinh ra khi đai uốn quanh bánh đai.

Đai hình thang được chế tạo thành vòng liển, do đó làm việc êm hơn so với đai dẹt, phải nối đai.

Tiêu chuẩn quy định 6 loại tiết diện đai hình thang, theo thứ tự từ nhỏ đến lớn $\mathrm{Z}, \mathrm{O}, \mathrm{A}, \mathrm{B}, \mathrm{C}$ và D , kích thước tương ứng với 6 loại đai tiêu chuẩn của Liên Xô cũ $\mathrm{O}, \mathrm{A}, \mathrm{B}, \mathrm{B}, \Gamma$, . Tỷ số giữa chiếu rộng đạ́y lớn hình thang với chiểu cao của đai hình thang bình thường $\mathrm{b} / \mathrm{h} \approx 1,6$, còn đối với đai hình thang hẹp $\mathrm{b} / \mathrm{h} \approx 1,2$. Tiêu chuẩn TCVN 3210-79 quy định kích thước tiết diện đai hình thang hẹp gồm 3 loại SPZ , SPA và SPB , tương ứng với đai YO, YA, YB của Liên Xô cũ (có 4 loại đai hình thang hẹp YO, YA, YB, YB). Với cùng chiếu rộng đai, đai hình thang hẹp có chiếu cao h lớn hơn, do đó khả năng tải cao hơn đai hình thang bình thường. Bảng 13.3 cho các thông số chủ yếu vê̂ kích thước các loại đai hình thang Liên Xô cũ.

Kich thuớc dai hình thang (Liên Xo cũ)

Loại đai	Loại tiết diện	Kích thưóc tiết diẹn, mm				$\begin{gathered} \mathrm{A}_{1}, \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{gathered} \mathrm{l}_{\mathrm{o}} \\ \mathrm{~mm} \end{gathered}$	Chiếu dài giới hạn, mm	Khơi lượng 1 m đai, kg / m
		b_{0}	b	h	yo				
Đai hinh thang	0	8,5	10	6	2,1	47	1320	400-2500	0,06
	A	11	13	8	2,8	81	1700	560-4000	0,10
	B	14	17	10,5	4,0	138	2240	$800-6300$	0,18
	B	19	22	13,5	4,8	230	3750	1800-10600	0,30
	Γ	27	32	19	6,9	476	6000	3150-15000	0,62
	Д	32	38	23,5	8,3	692	7100	4500-18000	0,90
Đai hình thang hẹp	YO	8,5	10	8	2,0	56	1600	630-3550	0,07
	YA	11	13	10	2,8	95	2500	800-4500	0,12
	YB	14	17	13	3,5	158	3550	3550-8000	0,37
	YB	19	22	18	4,8	278	5600	2000-8000	0,37
Chú thich. Các kích thướ $\mathrm{b}_{\mathrm{o}}, \mathrm{b}, \mathrm{h}, \mathrm{y}_{\mathrm{o}}$ - xem hình 13.4 ; l_{o} - chiếu dài của đai chuấn ; A_{1} - diện tích tiết diện đai.									

Chiếu dài tính toán của đai hinh thang, đo theo mặt phả̉ng trung hò của đai, được quy định theo tiêu chuẩn. Các trị só chiếu dài tiêu chuẩn (mm) của đai hình thang :
$400,(425), 450,(475), 500,(530), 560,(600), 630,(670), 710,(750), 800,(850), 900$, (950), 1000, (1060), 1120, (1180), 1250, (1320), 1400, (1500), 1600, (1700), 1800, (1900), 2000, (2120), 2240, (2360), 2500, (2650), 2800, (3000), 3150, (3350), 3550, (3750), 4000, (4250), 4500, (4750), 5000, (5300), 5600, (6000), 6300, (6700), 7100, (7500), 8000, (8500), 9000, (9500), 10000, (10600), 11200, (11800), 12500, (13200), 14000, (15000), 16000, (17000), 18000.

Đai hình lượe

Đai hình lược có các gân dọc ở mật trong của đai (hình 13.2 c và 13.5), các gân này gài vào các rănh hình thang khi đai vòng qua bánh đai. Sơ gân nên lấy chản, thường trong khoảng $2 \div 20$ gân, cho phép có thé chế tạo đai có đến 50 gân. Trong phần phảng của đai cơ mợt só lớp vải cao su và các sợi bện. Dai hinh lược cơ ưu điểm là hệ số ma sạ́t khá cao đồng thời cũng dễ uón quanh bánh đai như đai dẹt, do đó co thê giảm đường kinh bánh đai và tăng tỷ sơ truyển đến $u \leqslant 15$. Kich thước đai hỉnh lược các loại K, J và M của Liên Xó cũ cho

Hinh 13.5 trong bảng 13.4.

Loại đai hình thang, đai hình lược và đường kính tới thiéu của bánh đai nhỏ $\mathrm{d}_{1 \mathrm{~min}}$ được chọn theo mô men xoán T_{1} trên trục quay nhanh, (bảng 13.5).

Kich thước aai hình lựcc (Liên Xô cũ)

Loai tiết diện	Kich thước, mm			Diện tích$\mathrm{A}_{10}, \mathrm{~mm}^{2}$	Chiếu dài giới hạn, mm	Só gån		Khôi lượng 1 m đai có 10 gân, kg / m
	t	H	h			nên lấy	cho phép	
K	2,4	4,0	2,35	72	400-2000	2-36	36	0,09
J	4,8	9,5	4,85	356	1250-4000	4-20	50	0,45
M	9,5	16,7	10,35	1137	2000-4000	2-20	50	1,60
A_{10} - diện tich của tiết diện đai col 10 gân.								

Bảng 13.5
Đuờng kînh tới thiéu của bánh dai nhó và phạm vi mơmen xoản aói với eác loại đai hình thang (Liên Xócü)

Loại đai	Ký hiệu tiết diện	Mômen trên trục quay nhanh T_{1}, N.m	$\underset{\mathbf{m m i n}^{d_{1}}}{ }$	Loại đai	$\begin{array}{\|c} \hline \text { Ký } \\ \text { hiẹu } \\ \text { tiết } \\ \text { dię̣n } \end{array}$	Mômen trên truc quay nhanh T_{1}, N.m	$\mathrm{d}_{1 \text { min }}, \mathrm{mm}$
Đai hình thang	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~A} \\ & \mathrm{~B} \\ & \mathrm{~B} \\ & \Gamma \\ & \hline \end{aligned}$	$\begin{gathered} <30 \\ 15-60 \\ 45-150 \\ 120-600 \\ 420-2400 \\ 1600-6000 \end{gathered}$	$\begin{gathered} 63 \\ 90 \\ 125 \\ 200 \\ 315 \\ 500 \\ \hline \end{gathered}$	Đai hình thang hep	$\begin{aligned} & \text { YO } \\ & \text { YA } \\ & \text { YB } \\ & \text { YB } \end{aligned}$	$\begin{gathered} <150 \\ 90-400 \\ 300-2000 \\ >1500 \end{gathered}$	$\begin{gathered} 63 \\ 90 \\ 140 \\ 224 \end{gathered}$
Chui thích: 1 . V̛́i trị só T_{1} đă cho, đê tăng tuới thọ và hiẹu suât nên chọn loại đai tiết diẹn nhỏ trong phạm vi có thẽ. 2. Lây d_{1} lơn se tăng được hiẹu suất và tuới thọ đai.							

Dai răng

Đai răng dược ché tạo thành vòng kín, phía trong có răng hình thang (hình 13.2 d) ăn khớp với các răng trên bánh đai. Cấu tạo đai gồm các sợi thép bện (cáp) là phân tử truyên tải trọng, và nên là cao su hoạ̣c chất déo, đai được bọc vải nylon đế tãng độ bên mòn. Truyên động đai răng kết hợp được các ưu điểm của truyên động đai và truyên dộng xích. So với truyên động xích đai râng làm việc it ôn hơn (khe hở khi ăn khớp tương đới nhỏ) và không đời hơi bôi trơn. Thông só kết cấu chính của đai răng là mốdun $\mathrm{m}=\mathrm{t} / \pi$ ($\mathrm{t}-\mathrm{bước}$ của đai răng) và góc 2φ (hinh 13.2d).

Đai răng được dùng với vận tớc $v \leqslant 50 \mathrm{~m} / \mathrm{s}$, tỷ so truyen $u \leqslant 12$ (đôi khi $u \leqslant 20$) và công suất đ̛̣̂n 100 kW .

13.2.2. Bánh dai

Hình dạng kết cấu bánh đai được quyét định bởi kich thước (thường là đường kinh ngoài), loại đai và sơ lượg sản xuãt (đơn chiéc, hàng loạt, hàng khơi) và khả năng chê tạo của co sở sản xuắt (hình 13.6).

Bánh đai có đường kính nhỏ (dưới 100 mm) được chế tạo bàng dập hoạc đúc, không khoét löm (hình 13.6a).

Bánh dai co đường kinh lơn thường dược khoét lơm, có 10 hoạ̣ có $4 \div 6$ nan hoa, đế giảm bớt khới lượng. Các bánh đai này thường bao gôm ba phân : vành ngoài, tiêp xúc vỡ đai ; mayo đé láp lên truc và nan hoa hoạ̣c dla nới vành với mayo. Trong sản xuát đa̛n chiếc hoạc hàng loạt nhỏ bánh đai đường kinh lớn chế tạo từ phơi cán, phôi rèn, đúc hoạ̣c hàn ; trong sản xuất hàng loạt lân và hàng khới bánh đai được đúc. Hinh dạng vành phụ thuộc vào loại đai (hỉnh 13.2).

Bánh đai dẹt có be mạ̣t ngoài là mặt trụ (hinh 13.6c) hoạc có hinh trơng (phấn giừa hơi $106 i$) (hinh 13.6 d) đễ hạn chê khả năng tuột đai khơi bánh khi làm việc.

Đơi v̛̛i những bợ truyên vận tớc cao (v>40 m/s) người ta làm những rãnh vòng trên bê mặt bánh đai đế giảm tác dụng của các "chêm khí động", sinh ra khi đai chạy vào bánh đai, cơ ánh hưởng xấu đến khả nång tải của bọ truyên.

Dường kinh bánh đai nên lấy theo các trị sô tiêu chuẩn (mm) :
$40,45,50,56,63,71,80,90,100,112,125,140,160,180,200,224,250,315$, $400,450,500,560,630,710,800,900,1000,1250,1400,1600,1800,2000$.

Đường kính tính toán của bánh đai hình thang, là dường kính vòng tròn qua lốp trung hòa của đai cūng lấy theo các trị sơ tiêu chuẩn trên đây (từ 63 mm trở lên).

Chiêu rộng B bánh đai dẹt khi mác bình thường

$$
B=1,1 b+(10+15) \mathrm{mm}
$$

khi mác chéo hoạc nửa chéo :

$$
B=1,4 b+(10 \div 15) \mathrm{mm}
$$

b - chiéu rợng đai. Trị so B nên láy tròn theo tiêu chuấn (mm) :
$40,50,63,71,80,100,125,140,160,200,224,250,315,355,400,450$. Kích thưóc của rānh bánh đai hình thang được quy định theo tiêu chuân. Góc rãnh φ trong khoảng $34 \div 40^{\circ}$, tùy theo đường kính bánh đai, lăy trị s σ nhó khi đường kính nhó (vì có biến dạng của tiớt diện đai khi bị uớn, đường kính bánh đai càng nhỏ, dai bị biến dạng càng nhiểu). Bảng 13.6 cho các kích thước chử yếu của rãnh bánh đai hình thang (Liên Xơ cũ) (hình 13.7).

Chiếu rộng B của bánh đai x - s6 đai.

Báng 13.6
Kich thuớc chủ yéu của ränh banh dai hình thang (Lien Xo cü) (mm)

Hinh 13.7

Loai tí̛̛t diẹn đai	c	e	t	s
O	2,5	7,5	12	8
A	3,5	9	15	10
B	4,2	11	19	12,5
B	5,7	14,5	25,5	17
YO	2,5	10	12	8
YA	3,3	13	15	10

Kich thước kêt cấu bánh đai hình lực̣ và bánh đai răng cho trong các tài liệu vê truyến đợng đai.

13.3. CAC THÓNG SÓ HÌNH HỌC CHÍNH

Xét trương hợp bọ truyên đai mác blnh thường như sơ đô trên hình $13.8 ; \mathrm{d}_{1}$ và d_{2} - đường kinh tính toán của bánh dā̃n và bánh bị dăn ;
a - khoảng cách giữa hai trục ;

Hinh 13.8
α_{1}, α_{2} - góc ôm của đai trên bánh nhơ và bánh lớn.
γ - góc giữa hai nhánh day, là goc giữa hai đường tiếp tuyến vớ các vòng trờn d_{1} và d_{2} (gớc làm bởi 1 nhánh day với đường nơi hai tam $\mathrm{O}_{1} \mathrm{O}_{2}$ bà̀ng $\gamma / 2$).

Đường kính tinh toán d_{1} và d_{2} đơi vđ̛i đai dẹt là đường kính ngoài của bánh đai, đơi vơi đai hinh thang hoặc đai hỉnh lược là đường kinh vòng tròn qua lớp trung hòa của đai. Các thông a 6 hinh học chinh của bộ truyến đai là đương kính $\mathrm{d}_{1}, \mathrm{~d}_{2}$, góc ôm α_{1}, chiếu dài đai L và khoảng cách trục a.

Đường kính bánh đai không nên láy quá nhơ đê tránh cho đai khỏi chịu ứng suất uơn quá lớn, sinh ra khi đai vòng quanh bánh đai.

Đương kính d_{1} của bánh đai nhó trong bộ truyên đai dẹt co thê xác định theo công thức thực nghiẹm của Xaverin

$$
d_{1}=(1100+1300) \sqrt[3]{R_{1} / n_{1}}
$$

hoạc

$$
\begin{equation*}
d_{1}=(5,2 \div 6,4) \sqrt[3]{T_{1}}, \mathrm{~mm} \tag{13-1}
\end{equation*}
$$

\mathcal{R}_{1} - cong suất trên trục dẫn, kW ;
T_{1} - momen xoân trên trục dân, N.m

Đơi với đai hỉnh thang nên lấy đường kính bánh đai nhơ $\mathrm{d}_{1} \approx 1,2 \mathrm{~d}_{1 \mathrm{~min}}$; $\mathrm{d}_{1 \text { min }}$ - đường kính tới thiểu, tra bảng 13.5.

Đường kinh bánh đai lớn

$$
\begin{equation*}
d_{2}=d_{1} u(1-\xi) \tag{13-2}
\end{equation*}
$$

trong đó u - tỷ só truyên ; ξ - hệ sర trượt.
Góc ôm α_{1} trén bánh nhỏ

$$
\begin{equation*}
\alpha_{1}=180^{\circ}-\gamma \approx 180^{\circ}-57^{\circ}\left(\mathrm{d}_{2}-\mathrm{d}_{1}\right) / a \tag{13-3}
\end{equation*}
$$

Chiêu dải đai

$$
\mathrm{L}=2 \mathrm{a} \cos (\gamma / 2)+0,5 \pi\left(\mathrm{~d}_{2}+\mathrm{d}_{1}\right)+0,5 \gamma\left(\mathrm{~d}_{2}-\mathrm{d}_{1}\right)
$$

Thơng thường $\gamma<35^{\circ}$, do đơ ta chỉ chú ý đến hai sơ hạng đầu của dảy khai triển, có thể láy $\cos (\gamma / 2) \approx 1-\gamma^{2} / 8$ và lấy $\gamma \approx\left(\mathrm{d}_{2}-\mathrm{d}_{1}\right) / \mathrm{a}$.

Do đo ta co

$$
\begin{align*}
& L=2 a+\frac{\pi\left(d_{1}+d_{2}\right)}{2}+\frac{\left(d_{2}-d_{1}\right)^{2}}{4 a} \tag{13-4}\\
& a=\frac{1}{4}\left\{L-\frac{\pi\left(d_{1}+d_{2}\right)}{2}+\sqrt{\left[L-\frac{\pi\left(d_{1}+d_{2}\right)}{2}\right]^{2}-2\left(d_{2}-d_{1}\right)^{2}}\right\} \tag{13-5}
\end{align*}
$$

Góc ôm a_{1} nhỏ sể ảnh hường xău đốn khả nãng kéo của đai, do đó đơi vơi đai dẹt cần thỏa mãn điéu kiện $\alpha_{1} \geqslant 150^{\circ}$; đơi với đai hinh thang, do cơ tác dụng chem của đai vợi rânnh bánh đai, cho nên chl yêu cầu $\alpha_{1} \geqslant 120^{\circ}$.

Khoảng cách trục a càng lơnn thil goc om α_{1} càng lớn (trong trường ḥ̂p $u \neq 1$) và tân sơ thay đơi ựng suât trong đai sẽ giám. Do đơ đới với đai dẹt nên lây $a \geqslant 2\left(d_{1}+d_{2}\right)$. Đठi vơi đai hinh thang khoảng cách trục tơi thiếu

$$
a_{\min }=0,55\left(d_{1}+d_{2}\right)+h
$$

h - chiêu cao đai hinh thang.
Đé̛ hạn chê kích thước, giảm giá thành và ngăn ngừa dao động ngang của dai, khoảng cách trục 10 ńn nhất của bọ truyến đai hinh thang $a_{\max }=2\left(d_{1}+d_{2}\right)$. Tuy nhiên khoảng cách trục a càng nhỏ so vòng chạy của đai trong 1 giây v/L sé tăng lên, khie̛n tuởi thọ của đai giảm xuơng. Nên lăy v/L $\approx 3+5$ đới với đai dẹt và v/L $\approx 20 \div 30$ đơi với đai hinh thang và dai hinh lự̛̣c.

13.4. CO HỌC TRUYÊN DÔNG DAI

13.4.1. Lự tác dụng lên dai

Dé tạo nên lực ma sát giữa đai và bánh đai, cần phải câng đai vái lục ca̛ng ban $d{ }^{2} u F_{0}$.

Khi bộ truyên làm việc, bánh dẫn chịu tác dụng của momen xoân T_{1}, trong nhánh dẫn lực sê tạng lên là F_{1} và trong nhánh bị dẫn lực sê giảm xuóng còn F_{2} (hình 13.9 a).

Ta co hệ thức

$$
T_{1}=\frac{d_{1}}{2}\left(F_{1}-F_{2}\right)
$$

Gọi F_{1} là luc vong trong truyên dộng dai

$$
\begin{equation*}
F_{t}=F_{1}-F_{2} \frac{2 T_{1}}{d_{1}}=\frac{1000 R}{v} \tag{13-6}
\end{equation*}
$$

Hình 13.9
F_{t} là lực cơ ích, N ; d_{1} - đường kinh bánh dẫn, mm ; T_{1} - mômen xoán trên trục dẫn, N.m ; \mathcal{R} - công suất, kW ; v - vận tớc vòng của bánh đai, m/s.

Dể tìm quan hệ giữa lực cãng ban đâu F_{o} với các lực F_{1}, F_{2}, ta bỏ qua lực ly tâm và già thiét vật liệu đai tuân theo định luật Húc, khi đai chịu tải trọng ngoài lượng dãn trên nhánh dẫn bàng lượng co trên nhánh bị dẫ nghla là

$$
\begin{align*}
& F_{1}=F_{0}+0,5 F_{t} \text { và } F_{2}=F_{o}-0,5 F_{t}, \text { vậy } \\
& F_{0}=0,5\left(F_{1}+F_{2}\right) \tag{13-7}
\end{align*}
$$

Ole đa̛ tìm ra hệ thức giữa các lực căng F_{1} và F_{2} phụ thuộc ma sát giữa đai và bánh đai.

Trong trưòng họ̣p tớng quát ta xét đai hinh thang. Cát một phân tơ đai bàng hai mật cất theo hương kính (hinh 13.9a) và đật các lực pháp tuyến vái các mật cất này $F+d F$ và F. Trên phân tố đai này (hinh 13.9 b) còn chịu : các lực pháp tuyến dF_{n}, lực ma sát hướng kính và lực ma sát vòng $\mathrm{dF}_{\mathrm{f}}=\mathrm{fdF}_{\mathrm{n}}$ (f hẹ só ma sát giữa dai và bánh đai) và lực quán tính ly tâm của phan tớ đai $\mathrm{dF}_{\mathrm{It}}=\mathrm{q}_{\mathrm{m}} \mathrm{v}^{2} \mathrm{~d} \alpha$ (q_{m}-khớ lượng đai có chiếu dài 1 mét ; $\mathrm{v}-\mathrm{vạ̣n}$ tớc vòng của đai).

Điêu kiện cân bầng của phân tơ đai theo hương kính

$$
\begin{equation*}
(F+d F) \frac{d \alpha}{2}-F \frac{d \alpha}{2}+d F_{1 t}+2 d F_{n} \sin \frac{\varphi}{2}+2 d F_{f} \cos \frac{\varphi}{2}=0 \tag{13-8}
\end{equation*}
$$

Điêu kiện cân bàng theo hướng tiếp tuyên

$$
\begin{equation*}
F+2 d F_{f}-(F+d F)=0 \tag{13-9}
\end{equation*}
$$

Tù đảng thức (13-9) ta có $\mathrm{dF}=2 \mathrm{dF}_{\mathrm{f}}=2 \mathrm{fdF}_{\mathrm{n}}$ và thay vào đả̉ng thức (13-8), bó qua sớ hạng vô cùng bé bậc cao, tìm được

$$
\begin{equation*}
\left(F-q_{m} v^{2}\right) d a=\frac{d F}{f^{+4}} \tag{13-10}
\end{equation*}
$$

trong đó, f^{*} - hẹ só ma sát tưởng đương

$$
\begin{equation*}
\mathbf{f}^{\boldsymbol{*}}=\frac{\mathrm{f}}{\sin (\varphi / 2)+\mathrm{f} \cos (\varphi / 2)} \tag{13-11}
\end{equation*}
$$

Từ đả̉ng thức ($13-10$) co thể viết

$$
\frac{d F}{F-q_{m} v^{2}}=f^{*} d \alpha
$$

Tích phân hai vê đả̉ng thức trên theo cả cung trượt α_{t}, ta cơ

$$
\int_{\mathrm{F}_{2}}^{\mathrm{F}_{1}} \frac{\mathrm{dF}}{\mathrm{~F}-\mathrm{q}_{\mathrm{m}} \mathbf{v}^{2}}=\int_{0}^{\alpha_{\mathrm{t}}} \mathrm{f}^{\mathrm{A}} \mathrm{~d} \alpha
$$

hay là

$$
\begin{equation*}
\frac{F_{1}-F_{v}}{F_{2}-F_{v}}=e^{f^{*} \alpha_{t}}=\lambda \tag{13-12}
\end{equation*}
$$

trong đo $F_{v}=q_{m} v^{2}$ - lực cãng phụ do lực ly tam gay nen. Lực ly tam có tác dụng làm giảm áp suất giữa đai và bánh đai, nghỉa là làm giâm tác dụng có ích của lực cáng ban đâu F_{o} (Các công thức trên lực tính bậng Niutơn, q_{m} tính bầng kg / m và v tính bàng m / s).

Thực nghiệm cho thây không cơ chuyễn vị hương kính của đai trên bánh dẫn, do đó

$$
\begin{equation*}
\mathbf{f}_{1}^{\mathbf{t}}=\mathbf{f} / \sin (\varphi / 2) \tag{13-13}
\end{equation*}
$$

Đơi với đai dẹt $\varphi=180^{\circ}$ và $f^{*}=\mathrm{f}$. Qua đây co thê thây rơ khả năng tải của đai dẹt khá tháp so với đai hình thang (khi góc $\varphi=40^{\circ}$ thi $\mathrm{f}^{*} \approx 3 \mathrm{f}$). Giám góc φ sê tăng được hệ so ma sat tương dương f^{*}, tuy nhiên cơ thê gây nên hiẹn tượng kẹt đai, làm hóng dai rát nhanh.

Trong các bơ truyến đai có vạn tớc $v \leqslant 10 \mathrm{~m} / \mathrm{s}$, có thể bỏ qua lực quán tính và công thức (13-12) cơ dạng thông thường, gọi là công thức Ole

$$
\begin{equation*}
\frac{F_{1}}{F_{2}}=e^{t^{*} \alpha_{t}}=\lambda \tag{13-14}
\end{equation*}
$$

Từ các hệ thức (13-6) và (13-12) ta co

$$
\begin{equation*}
F_{1}=\frac{\lambda}{\lambda-1} F_{t}+F_{v} ; F_{2}=F_{1}-F_{t}=\frac{F_{t}}{\lambda-1}+F_{v} \tag{13-15}
\end{equation*}
$$

Lực tác dụng lên trục bánh đai (hình 13.10)

$$
\mathrm{F}_{\mathrm{r}}=\sqrt{\mathrm{F}_{1}^{2}+\mathrm{F}_{2}^{2}+2 \mathrm{~F}_{1} \mathrm{~F}_{2} \cos \gamma} \approx 2 \mathrm{~F}_{\mathrm{o}} \cos (\gamma / 2)
$$

hoạ̣c

$$
\begin{equation*}
F_{r}=2 F_{o} \sin \left(\alpha_{1} / 2\right) \tag{13-16}
\end{equation*}
$$

vơi α_{1} - goc óm trên bánh đai nhó

Hinh 13.10

13.4.2. Ứng suât trong dai

Ứng suăt căng ban đầu do F_{o} gay nên

$$
\begin{equation*}
\sigma_{\mathrm{o}}=\frac{\mathrm{F}_{\mathrm{o}}}{\mathrm{~A}} \tag{13-17}
\end{equation*}
$$

A - diẹn tích tiêt diện đai. Đê đai làm viẹc được lâu bến, qua kinh nghiệm sừ dụng bọ truyên đai, ngươi ta láy $\sigma_{\mathrm{o}}=1,2 \div 1,8 \mathrm{MPa}$.

Khi chịu tác dụng của tải trọng ngoài, ứng suât trong nhánh dẫn σ_{1} và trong nhánh bị dã̃n σ_{2} (hỉnh 13.11a) :

$$
\left.\begin{array}{l}
\sigma_{1}=\frac{\mathrm{F}_{1}}{\mathrm{~A}}=\frac{\lambda}{\lambda-1} \sigma_{\mathrm{t}}+\sigma_{\mathrm{v}} \tag{13-18}\\
\sigma_{2}=\frac{\mathrm{F}_{2}}{\mathrm{~A}}=\frac{\sigma_{\mathrm{t}}}{\lambda-1}+\sigma_{\mathrm{v}}
\end{array}\right\}
$$

trong do

$$
\begin{equation*}
\sigma_{v}=F / A=q_{m} v^{2} / A=\rho_{m} v^{2} \tag{13-19}
\end{equation*}
$$

ρ_{m} - khð̛i lượng riêng của vật liệu đai, đđ̛i vấi đáai vải cao su $\rho_{\mathrm{m}}=1250 \div 1400 \mathrm{~kg} / \mathrm{m}^{3}$, A - diện tích tiết diện đai. Ứng sưát σ_{v} là ûng suất do lực ly tâm gay nen. Ững suất

$$
\begin{equation*}
\sigma_{\mathrm{t}}=\frac{\mathrm{F}_{\mathrm{t}}}{\mathrm{~A}} \tag{18-20}
\end{equation*}
$$

dược goi là ứng suât có ích.
Ngoài các ưng suăt tren, trong các doạn dai vòng qua bánh đai còn xuất hiện ựng suất uơn $\sigma_{\mathrm{u} 1}, \sigma_{\mathrm{u} 2}$ (hinh 13.11).

Theo định luật Húc, ưng suât tỳ lẹ̣ bậc nhất vơi biên dạng tương đđ̛i

$$
\sigma_{u}=\varepsilon E=\frac{\mathbf{y}_{\max }}{\mathbf{r}} \dot{E}
$$

b)

Hinh 13.11
$\mathrm{y}_{\text {max }}$ - khoảng cách từ thơ đai ngoài cùng đên
lợp trung hòa của đai ; r-bán kính cong của vòng đai ; E - môđưn đàn hôi, đới với đai vài cao su $\mathrm{E}=200 \div 350 \mathrm{MPa}$.

Ứng suât uớn lớn nhất trong đai dẹt khi đai vòng qua bánh nhỏ, đường kính d_{1}; $y_{\max }=0,5 \mathrm{~h}$ và $\mathrm{r}=0,5\left(\mathrm{~d}_{1}+\mathrm{h}\right) \approx 0,5 \mathrm{~d}_{1} ; \mathrm{h}$ - chiéu dày đai dẹt (hinh 13.11b)

$$
\begin{equation*}
\sigma_{\mathrm{u}_{1}}=\frac{\mathrm{h}}{\mathrm{~d}_{1}} \mathrm{E} \tag{13-21}
\end{equation*}
$$

Đơi vỡi đai hinh thang, ứng suât uơn lớn nhất

$$
\begin{equation*}
\sigma_{u_{1}}=\frac{2 y_{o}}{d_{1}} E \tag{13-22}
\end{equation*}
$$

trong đó y_{o} - khoảng cách từ lớp trung hòa đên đáy lớn của tiết diẹn hỉnh thang.
Các công thức (13-20) và (13-21) cho thấy ứng suât uôn phụ thuợc chiêu dày đai và đường kính bánh đai nhỏ. Đế hạn chê ứng suất uớn khong nên lấy đường kinh bánh đai quá nhỏ và dùng đai có chiêu dày lốn.

Ững suât tởng lớn nhât trên nhánh dẫn của đai, lúc đai vào bánh nhỏ (hỉnh 13.11a)

$$
\begin{equation*}
\sigma_{\max }=\frac{\lambda}{\lambda-1} \sigma_{i}+\sigma_{v}+\sigma_{u_{1}} \tag{13-23}
\end{equation*}
$$

Biêu đơ phấn bơ ựng suắt theo chiếu dài đai trinh bày trên hinh 13.11. Khi đai làm việc mối phân tớ đai chịu ứng suất thay đởi, trị só lớn nhất là $\sigma_{\max }$ và trị so nhỏ nhât là σ_{2}. Ứng suât thay đơi là nguyên nhan gây nên sự hỏng vì mỏi của đai.

13.4.3. Sư trươt của dai

Tương tự như trong truyên động bánh ma sát, khi truyên tài trọng giữa đai và bánh đai cûng xảy ra hiện tượng trự̂ dàn hời. Như đã trình bày ờ trên, khi bọ truyên đai làm việc, các nhánh đai chịu tác dụng lực khác nhau (so đờ lực có nét liên trên hinh 13.12).

Các phân tơ đai chạy trên nhânh dã̛n chịu lực là F_{1}, vòng qua bánh đai dā̃n sang nhánh bi dẫn chịu lực $\mathrm{F}_{2}<\mathrm{F}_{1}$. Do đó đọ dãn dài tương đơi của đai cũng giảm xuống. Kết quả là xuât hiện sự trượt đản hới của đai trên bánh đai, nghla là đai chạy chậm hơn bánh dẫn.

Khi phân tớ đai chạy vòng qua bánh bi dẫn, đọ dân dài tương đới của đai tăng lên (do lực tăng từ F_{2} lên F_{1}) và xảy ra trượt đản hời, đai chạy nhanh hơn bánh bị dân. Như vậy trượt đản hời có nguyên nhân do đai cơ tính đàn hời, khi làm viẹc đi qua những vùng chịu lực khâc nhau, làm thay đơi biên dạng của đai, gay nên sự trượt tương đới giữa dai và bánh đai.

Sự trượt đàn hồi không xảy ra trên toàn $b o ̣$ cung ôm α_{1} va α_{2}, mà xảy ra trên một phân của các cung này là $\alpha_{1 t}$ và $\alpha_{2 t}$, gọi là các cung trươt. Cung trươt ∂ ve phia nhánh đai sấp ra khỏi bánh đai (hình 13.12), Tai trọng ngoai càng tăng lên thil cung trượt càng tăng lên và các cung không trượt α_{10} và α_{20} còn gọi là cung tỉnh, giảm xuóng.

Nêu tiếp tục tăng tải trọng đến mức cung trượt choán toàn bộ cung óm, sẻ xáy ra trượt hoàn toàn, ta gọi là hiện tượng trượt tron. Vạy hiện tượng trượt trơn xảy ra khi bộ truyên bị quá tải, bánh bị dẵn dừng lại và hiẹu suất của bợ truyên bầng s6́ không.

Hinh 13.12

13.4.4. Đường cong trượt và hiệu suất bộ truyền dai

Khả năng tải của bộ truyến đai được đạ̣c trưng bởi lực vòng F_{t} hoặc môđưn xoân T_{1} truyên qua bánh dẩn, phụ thuộc lực căng ban đẩu F_{o} và ma sát giữa đai và bánh đai. Thật vậy, bỏ qua ảnh hưởng của lực ly tâm, từ các hệ thức (13-6), (13-7) và (13-14) ta có :

$$
\begin{equation*}
F_{t}=\frac{2(\lambda-1)}{\lambda+1} F_{o} \text { hoạc } F_{1}=2 \psi F_{o} \tag{13-24}
\end{equation*}
$$

trong dó : $\psi=(\lambda-1) /(\lambda+1)-$ hệ số kéo.
Rõ rảng là nếu tăng lực cảng ban đầu F_{o} thỉ lực vòng F_{t} cũng tảng lên. Tuy nhiên diêu này cūng dẫn tới là lực $F_{1}=F_{o}+0,5 F_{t}$ cŭng tăng lên, ưng suất trong đai tảng lên và tuỡi thọ của đai giảm xuống. Ngược lại, nếu lực căng ban đầu nhỏ, lực ma sát sinh ra giữa đai và bánh đai sē nhỏ và bộ truyên không thể truyến được lực vòng F_{t} lớn.

Trị số hợp lý của lực căng ban đầu F_{o} được xác định qua nghiên cứu mói liên hệ giữa hệ só́ kéo :

$$
\begin{equation*}
\psi=(\lambda-1) /(\lambda+1)=\mathrm{F}_{1} / 2 \mathrm{~F}_{\mathrm{o}}=\sigma_{1} / 2 \sigma_{0} \tag{13-25}
\end{equation*}
$$

với hệ só trượt $\xi=\left(\mathrm{v}_{1}-\mathrm{v}_{2}\right) / \mathrm{v}_{1}\left(\mathrm{v}_{1}-\right.$ vận tốc vòng của bánh dẫn; $\mathrm{v}_{2}-$ vận tốc vòng của bánh bị dẫn) và với hiệu suất η. Các đồ thị đường cong trươt $\xi-\psi$ và đô thị đường cong hiệu suất $\eta-\psi$ (hinh 13.13) dược lập theo kết quả thi nghiệm các loại dai, trên trục tung ghi hệ só trượt ξ và hiệu suất η, tính theo phần trăm, trên trục hoành ghi hệ só kéo ψ.

Đường biểu diễn quan hệ giữa ξ và ψ được gọi là dương cong trượt. Qua đồ thị ta thây đoạn đấu của đường cong trượt, khi $0 \leqslant \psi \leqslant \psi_{o}, \psi_{o}$ là hẹ só kéo tới hạn, gần như đoạn thả̉ng. Điêu này chứng tỏ ơ giai đoạn này, với mợt trị so F_{o} đă định, nêu tăng dẫn tải trọng có ích F_{t} thì hệ sơ

Hình 13.13 trượt cunng täng theo ty lệ bạc nhát, nghia là khi $0 \leqslant \psi \leqslant \psi_{o}$ trong bộ truyên chl xảy ra trượt dàn hời. Néu tăng F_{t} để $\psi>\psi_{o}$ đai sẽ bị trượt trơn từng phân (vừa trượt đăn hới vừa trượ trơn), hệ sơ trượt ξ tăng nhanh. Néu tiếp tục tăng F_{1} để ψ đạt trị só $\dot{\psi}_{\max }$ sê xảy ra hiện tượng trượt trơn hoàn toàn (trượt trơn toàn phân).

Qua đ夭́ thị duờng cong hiếu suá̛t $\eta-\psi$ (hình 13.13) ta thấy đ giai đoạn đầu η tăng khi ψ tăng lên (chủ yếu do công suât mát mát trong các ố trục giảm tương dói so vơi công suăt có $\mathfrak{i c h}$). Hiệu suắt η đạt trị só cực đại khi $\psi \approx \psi_{o}$. Lúc này công suât mất mát chủ yếu do nộ ma sát trong đai, vl vậy mất mát công suất càng tăng khi đường kính bánh đai càng nhỏ.

Khi $\psi>\psi_{o}$ hiệu suất giảm nhanh vì tãng mất mát công suât do dai bị trượt nhiểu, ngoài ra, đai bị mòn khá nhanh.

Nghiên cứu đờ thị đường cong trự̛̣t và đường cong hiệu suá̛t, có thể kết luận rằng bộ truyên đai làm việc có lợi nhất khi $\psi=\psi_{o}$, tại đây hiệu suắt η lớn nhất, dới vá̛i đai dẹt $\eta=0,97 \div 0,98$, đói với đai hỉnh thang $\eta=0,92 \div 0,97$. Néu non tải ($\psi<\psi_{\mathrm{o}}$) khả năng của bộ truyên không được dùng hết, nếu làm việc với tải trọng quá lợn ($\psi>\psi_{0}$),
đai sê bị mòn nhanh, hiệu suất giám và tãng mất mát vận tớc. Qua các sơ liệu thi nghiệm tìm được $\psi_{0}=0,4 \div 0,5$ đơi vơi đai dẹt bằng vạt liẹu tớng hạp, $\psi_{0}=0,6$ đơi vơi đai dẹt vá cao su ; $\psi_{\mathrm{o}}=0,6 \div 0,7$ đOi vói đai hinh thang. Ty so $\varphi_{\max } \varphi_{\mathrm{o}}=1,15 \div 1,50$ biểu thị khả năng chịu quá tải tực thời của bọ truyên.

13.4.5. Vạn tớc và tỷ so truyèn

Vl có trượt cho nên vận tớc vòng v_{2} của bánh bị dẫn chạm hơn vận tớc vòng v_{1} của bánh dả̃n :

$$
v_{2}=v_{1}(1-\xi)
$$

Hệ sơ trượt của đải dẹt vải cao su hoạc vải $\xi \approx 0,01$, của đai hình thang sợi xép $\xi \approx 0,02$, sơi bện $\xi=0,01$.

Vận tớc vòng được xác định theo công thức

$$
\begin{align*}
& \mathrm{v}_{1}=\frac{\pi \mathrm{d}_{1} \mathrm{n}_{1}}{60 \cdot 1000} \mathrm{~m} / \mathrm{s} \\
& \mathrm{v}_{2}=\frac{\pi \mathrm{d}_{2} \mathrm{n}_{2}}{60 \cdot 1000} \mathrm{~m} / \mathrm{s} \tag{13-26}
\end{align*}
$$

trong đơ đượng kinh $\mathrm{d}_{1}, \mathrm{~d}_{2}$ tính bà̀ng $\mathrm{mm} ; \mathrm{n}_{1}, \mathrm{n}_{2}-\mathrm{sớ}$ vòng quay trong 1 phút của bánh dẫn và bánh bị dã̃n, vg/ph.

Ty so truyên

$$
\begin{equation*}
u=\frac{\omega_{1}}{\omega_{2}}=\frac{n_{1}}{n_{2}}=\frac{d_{2}}{d_{1}(1-\xi)} \tag{13-27}
\end{equation*}
$$

Khi tính gân đúng cơ thê bó qua hệ só trựt, do đo $u=\frac{d_{2}}{d_{1}}$

13.5. TÍNH TRUYÊN DÔNG DAI

13.5.1. Chỉ tiêu tính toán bọ truyền dai

Qua những phan tich ơ trên ta thây chil tieu chủ yêu dé tính toán bọ truyên dai là khà năng kéo và tười thọ.

Dể đảm bảo khả năng kéo của đai, nghia là khi đai làm viẹc không xảy ra trự̛̣t trơn (dù chl trượt trơn từng phần) thi hệ s σ kéo $\psi \leqslant \psi_{o}$, hay là từ hẹ thức (13-25), ta cơ điếu kiẹn

$$
\begin{align*}
& \psi=\sigma_{\mathrm{t}} / 2 \sigma_{0} \leqslant \psi_{0} \\
& \sigma_{\mathrm{t}} \leqslant 2 \psi_{\mathrm{o}} \sigma_{0} \tag{13-28}
\end{align*}
$$

Mặt khác do tác dụng của ứng suaft thay đởi, sau mọt $s \delta$ chu kỳ làm viẹc dai co thể bị hơng do mỏi. Quan hệ giữa ứng suất lớn nhất $\sigma_{\text {max }}$ trong đai và só chu kỳ làm việc N_{c} cho đến khi đai bị hơng được biéu thị bầng phương trình đường cong mõi (1.6).

$$
\begin{equation*}
0_{\max }^{\mathrm{m}} \mathrm{~N}_{\mathrm{c}}=\mathrm{C} \tag{13-29}
\end{equation*}
$$

Điêu kiện đê đai không bị hỏng do mỏi

$$
\begin{equation*}
\sigma_{\max } \leqslant \mathrm{C}^{1 / \mathrm{m} / \mathrm{N}_{c}^{1 / m}=\mathrm{C}^{*} / \mathrm{N}_{\mathrm{c}}^{1 / \mathrm{m}} .} \tag{13-30}
\end{equation*}
$$

s ó $\mathrm{m} \overline{\mathrm{u}} \mathrm{m}=6$ đói với đai dẹt $; \mathrm{m}=11$ đới với đai hình thang ; $\mathrm{C}^{*}=60 \div 70 \mathrm{MPa}$ đới với đai dẹt bà̀ng cao su ; $\mathrm{C}^{\prime \prime}=90 \div 100 \mathrm{MPa}$ đới với dai hinh thang. Trong miên chu kỳ lớn ($\mathrm{N}_{\mathrm{c}}>10^{9}$) $\mathrm{C}^{*} \approx 38 \mathrm{MPa}$.

Từ các hệ thức ($13-23$) và ($13-30$) ta có điêu kiẹn

$$
\begin{equation*}
\sigma_{t} \leqslant \frac{\lambda-1}{\lambda}\left(\mathrm{C}^{*} / \mathrm{N}_{\mathrm{c}}^{1 / \mathrm{m}}-\sigma_{\mathrm{lt}}-\sigma_{\mathrm{ul}}\right) \tag{13-31}
\end{equation*}
$$

Đơi với bộ truyên co X_{b} bánh đai cùng đương kính ($u=1$) só chu kỳ làm việc N_{c} cho tới khi hỏng được tính theo công thức

$$
\begin{equation*}
N_{c}=3600(v / L) x_{b} t_{h} \tag{13-32}
\end{equation*}
$$

với t_{h} - só giờ làm việc cho tới hỏng ; v/L - só́ vòng chạy của đai trong 1 giây.
Khi $u \neq 1$ ta dùng hệ số ν_{u} xét đên ảnh hưởng khác nhau của ửng suất uớn trên bánh nhỏ và bánh lớn (ứng suắt uớn trên bánh lớn có trị sơ nhỏ, do đơ tười thẹ tẳng lên)

$$
\begin{equation*}
N_{c}=3600(v / L) x_{b} t_{h} / v_{u} \tag{13-33}
\end{equation*}
$$

Tùy theo tri só u có thé lây $\nu_{\mathrm{u}}=1,2 \div 2 \ldots$
Qua các sơ liệu thực nghiệm cơ thê định được trị sơ ứng suãt có fch cho phép [σ_{t}] thỏa măn các điêu kiện (13-28) và (13-31) đé đai có thé lảm việc không bị trượt trơn (đảm bảo khả năng kéo) và lâu bồn.

Như vậy đai được tính toán theo điéu kiện

$$
\begin{equation*}
\sigma_{t}=\frac{F_{t} K_{d}}{A} \leqslant\left[\sigma_{t}\right] \tag{13-34}
\end{equation*}
$$

trong đớ A - diện tích tiét diẹn đai. Đơi với đai hình thang $\mathrm{A}=\mathrm{x} . \mathrm{A}_{1}, \mathrm{x}-\mathrm{s} \delta$ đai, A_{1} - diện tích tiết diện 1 đai hinh thang; đới với đai hình lược $\mathrm{A}_{\mathrm{c}}=\mathrm{x} \cdot \mathrm{A}_{10} / 10 ; \mathrm{x}-\mathrm{so}$ gân ; A_{10} - diện tích tiêt diện đai hình lưọc có 10 gân ; K_{d} - hệ sơ tải trọng động, xét đớn ảnh hưởng của tải trọng động và chế độ làm việc của bộ truyên (bảng 13.7).

Báng 13.7
Hẹ so tai trong aơng K_{d}

Dạc tinh taxi trọng	Loại máy	K_{d}
Tài trong tinh. Tál trong mo máy dơn 120\% so vớ tadi trong danh nghia	Máy phát diên, quạt, máy nén và máy boom ly tâm ; máy căt got liên tuc ; băng tầ	10
Taii trong làm vièc co dao dông nhó Tail trong mó máy dân 150% so vád tai trong danh nghia	Máy bơn và máy nén khi kiểu pittông có ba xilanh trơ În ; xlch tàl, máy phay, máy tien ro vên ve	4,1
Tall trong làm viêce co dao dêng lớn. Tảl trong mở máy dến 220% so vớa tài trong danth nghia	Thlat bif dấn dộng quay hai chiờu ; máy bocm và máy nón khí kiếu môt hoặc hai pít tơng ; máy bado và máy $x \propto$; vít vân chuyến và máng cào ; máy óp vít và máy áp lệch tâm có vơ lăng năng	\$25
Tài trọng có va dập và thay đời nhiều Tài trọng mó máy dến 300% so vói tái trong danh nghia	Máy cất tấn, bưa mây, máy nghiền ; thang máy ; máy xúc ; máy op kiều vít và máy óp lâch tâm co vơ lăng nhe	1,5 $\div 1.6$

Chú thich 1 Dơi với dồng co c mômen md̀ máy lớn, đóng mó nhiều lần, các tri só trong báng dưoc tăng thêm 0,15
2. Các tri 8 ô trong bảng dìng cho chế đ̛̣̣̂ làm việc 1 ca ; nêu làm viêc 2 ca cần tâng thêm 0,15 và nêu làm viêc $3 \mathrm{cacần}$ täng thêm 0,35 .

13.5.2. Tính dai dẹt

Û́ng suất có ích cho phép của đai dẹt

$$
\begin{equation*}
\left[\sigma_{1}\right]=\left[\sigma_{t}\right]_{0} \mathrm{C}_{\mathrm{b}} \mathrm{C}_{\alpha} \mathrm{C}_{\mathrm{v}} \tag{13-35}
\end{equation*}
$$

trong đó $\left[\sigma_{\mathrm{l}}\right]_{\mathrm{o}}$ - ưng suất cơ ích cho phếp của bộ truyến đai làm việc trong điêu kiện thi nghiệm tiêu chuẩn : bọ truyển nằm ngang, góc ơm $\alpha=180^{\circ}$, vận tớc vòng của đai $\mathrm{v}=10 \mathrm{~m} / \mathrm{s}$, tải trọng không có va đạp (bầng 13.8).

Bàng 13.8
Û́ng suât có ich cho phép $\left[\sigma_{\mathrm{r}}\right]_{o}$ của dai dẹt (vái $\sigma_{o}=1,8 \mathrm{MPa}$)

Loại đai	$\mathrm{d}_{1} / \mathrm{h}$									
	25	30	35	40	45	50	60	75	100	
Vải cao su	2,10	2,17	2,20	2,25	2,28	2,30	2,33	2,37	2,40	
Da	1,70	1,90	2,04	2,15	2,23	2,30	2,40	2,50	2,60	
Sợi bông	1,50	1,60	1,67	1,72	1,77	1,80	1,85	1,90	1,95	
Sợ len	1,20	1,30	1,37	1,47	1,47	1,50	1,55	1,60	1,65	

Chú thích: Vơi $\sigma_{0}=2 \mathrm{MPa}$ các trị sơ $\left[\sigma_{\mathrm{t}}\right]_{\mathrm{o}}$ trong bảng được tăng thêm 10%, vó́i $\sigma_{0}=1,6 \mathrm{MPa}-$ giám 10%.
Các hệ sơ: C_{b} - hệ sỡ xét đến sự bố trí bộ truyến và cách cãng đai. Nếu bộ truyên có bộ phận tự động cång đai, bảo đảm lực căng đai không đởi $\mathrm{C}_{\mathrm{b}}=1$. Tùy theo góc nghiêng β của đường nới hai tám bộ truyến so với đường nằm ngang (hình 13.1): khi $0 \leqslant \beta \leqslant 60^{\circ} \mathrm{C}_{\mathrm{b}}=1$; khi $60^{\circ}<\beta \leqslant 80^{\circ} \mathrm{C}_{\mathrm{b}}=0,9$; khi $80^{\circ}<\beta \leqslant 90^{\circ} \mathrm{C}_{\mathrm{b}}=0,8$.
C_{α} - hệ số xết đến ảnh hưởng của gớc ồm, tra bảng 13.9 theo trị số gơc ôm α_{1} trên bánh nhỏ, hoạ̣c tính theo công thức $\mathrm{C}_{\alpha}=1-0,003\left(180-\alpha_{1}\right), \alpha_{1}$ tính bằng độ.

Bảng 13.9
$H e ̀$ so C_{α} (dai dẹt)

α_{1}^{o}	110	120	130	140	150	160	170	180
C_{α}	0,79	0,82	0,85	0,88	0,91	0,94	0,97	1,00

C_{v} - hệ sớ xét đến ánh hương của vận tớc ; vận tớc càng lơnn lực ly tâm càng lón, làm giảm ma sát giữa đai và bánh đai ; C_{v} đối với đai dẹt vải cao su tra theo bảng 13.10 hoạc tinh theo công thức $C_{v}=1,04-0,0004 \mathrm{v}^{2}$, vận tớc dai v tính bàng m / s.

Bàng 13.10
Hê só C_{v} (dai dẹt vải cao su)

$\mathrm{v}(\mathrm{m} / \mathrm{s})$	1	5	10	15	20	25	30
C_{v}	1,04	1,03	1,0	0,95	0,88	0,79	0,68

Diện tích A - tiết diện đai dẹt phải thỏa măn điếu kiện (13-34), do đó

$$
\begin{equation*}
A=\mathrm{bh} \geqslant \frac{\mathrm{~F}_{\mathrm{t}} \mathrm{~K}_{\mathrm{d}}}{\left[\sigma_{\mathrm{t}}\right]} \tag{13-36}
\end{equation*}
$$

Thông thường chiếu day h của đai được chọn trước theo đường kinh bánh đai nhó d_{1} sao cho $\mathrm{h} / \mathrm{d}_{1}$ không lơn quá. Nếu láy $\mathrm{h} / \mathrm{d}_{1} \geqslant 1 / 35$ đới vơi đai da, $\mathrm{h} / \mathrm{d}_{1} \geqslant 1 / 40$ đói vỡi đai vâi cao su và $h / d_{1} \geqslant 1 / 30$ đơi vơi đai sợi bông. Chiêu dày h của đai lấy theo các trị sơ tiêu chuẩn

Từ (13-36) tìm được chiếu rợng b của đai :

$$
\begin{equation*}
\mathrm{b} \geqslant \frac{\mathrm{~F}_{\mathrm{i}} \mathrm{~K}_{\mathrm{d}}}{\left[\sigma_{\mathrm{l}}\right]_{\mathrm{o}} \mathrm{C}_{\mathrm{b}} \cdot \mathrm{C}_{\alpha} \cdot \mathrm{C}_{\mathrm{v}}} \tag{13-37}
\end{equation*}
$$

13.5.3. Tính dai hình thang và dai hình lược

Khi thiết kế bộ truyên đai hỉnh thang hoạc đai hình thang hẹp, loại tiế diện đai được chọn theo trị sơ mômen xoân T_{1} (bảng 13.5), do đơ đă biết diện tích A_{1} của tiết diện 1 đai. Từ điéu kiện (13-34) ta xác định được so đai \times :

$$
\begin{equation*}
x \geqslant \frac{F_{t} K_{d}}{A_{1}\left[\sigma_{\mathrm{t}}\right]} \tag{13-38}
\end{equation*}
$$

Chú ý rà̀ng $\left[F_{\mathfrak{t}}\right]=\mathrm{A}_{1}\left[\sigma_{\mathfrak{t}}\right]$ - lực vòng cho phép đời vá̛i 1 dai $; \mathrm{F}_{\mathrm{t}} \cdot \mathrm{v}=\mathcal{R}$ và $\left[F_{\mathrm{t}}\right] . \mathrm{v}=[\mathcal{R}]$, trong đó \mathfrak{R} - công suất cần truyên ; $[\mathcal{R}]$ công suất cho phép của 1 đai, ta có thề viét hệ thức (13-38) dươi dạng :

$$
\begin{equation*}
\mathrm{x} \geqslant \frac{\mathcal{R} \cdot \mathrm{~K}_{\mathrm{d}}}{[\mathcal{R}]} \tag{13-39}
\end{equation*}
$$

Công suất cho phép [\mathcal{R} của 1 dại dự̛̣ xác đinh theo cong thức :

$$
\begin{equation*}
[\mathcal{R}]=\left(\mathcal{R}_{\mathrm{o}} \mathrm{C}_{\alpha} \mathrm{C}_{\mathrm{L}}+\frac{\Delta \mathrm{T}_{1} \mathrm{n}_{1}}{9550}\right) \mathrm{kW} \tag{13-40}
\end{equation*}
$$

vơi \mathcal{R}_{o} - cơng suắt truyên được bời 1 dai trong đieu kiện sơ bánh đai trong bộ truyên $x_{b}=2$, tỷ só truyên $u=1$, góc ơm $\alpha=180^{\circ}$, chiêu dài đai L_{o}, làm việc không có tải trọng đọng (hình 13.14a, b - các loại đai hình thang Liên Xo O, A, B, B ; hình 13.14 c - các loại hình thang hẹp Lièn Xo YO, YA) ;
C_{α} - hệ so xét đến ảnh hường của góc ơm (bảng 13.11);
C_{L} - hê sơ xét đến ành hường của chiêu dài đai đến tươi thọ đai ; phụ thuộc tỷ sơ chiếu dải đai đâng tính toán vợ chiéu dài L_{o}; chiêu dài đai càng tãng tẩn sớ thay đới ứng suất càng giảm và tướ thọ sê tăng lệ̆ (bàng 13.12).

Bảng 13.11

$$
\text { Hê so } \mathrm{C}_{\alpha} \text { (dai hình thang) }
$$

α_{1}°	70	80	90	100	120	140	160	180
C_{α}	0,56	0,62	0,68	0,74	0,83	0,89	0,95	1,0

Hinh 13.14
Bảng 13.12
He̦ só CL

$\mathrm{L} / \mathrm{L}_{\mathrm{o}}$	Dai hình thang	Dai hinh thang hẹp và đai hình lượ	$\mathrm{L} / \mathrm{L}_{\mathrm{o}}$	Dai hinh thang	Dai hinh thang hẹp và đai hinh lượ
0,3	0,79	0,80	1,2	1,04	1,03
0,4	0,82	0,85	1,4	1,07	1,06
0,5	0,86	0,89	1,6	1,10	1,08
0,6	0,89	0,91	2,0	1,15	1,12
0,8	0,95	0,96	2,4	1,20	1,15
1	1	1	\ldots		

C_{1} - hệ sớ xét đến ảnh hường của tải trọng (bảng 13.10);
$\Delta \mathrm{T}_{1}$ - só gia mômen xoán (N.m) là phần tải trọng có thể truyến thêm đới với các bộ truyên có tỷ só truyên $u>1$, do û́ng suất uón được giảm bớt khi dai vòng qua bánh lớn (bảng 13.13); với $u=1 \div 1,02, \Delta \mathrm{~T}_{1}=0 ; \mathrm{n}_{1}-$ só vòng quay trong 1 phút của bánh đai dẵn.

Bảng 13.13
Só gia mómen xoăn ΔT_{1} (N.m)

Tỷ sơ truyên u	Dai hinh thang				Dai hinh thang hep	
	O	A	B	B	YO	YA
$1,03-1,07$	0,08	0,20	0,5	1,5	0,3	0,7
$1,08-1,13$	0,15	0,40	1,1	2,9	0,6	1,4
$1,14-1,20$	0,23	0,60	1,6	4,4	0,9	2,1
$1,21-1,30$	0,30	0,80	2,1	5,8	1,2	2,8
$1,31-1,40$	0,35	0,90	2,3	6,6	1,4	3,1
$1,41-1,60$	0,38	1,0	2,6	7,3	1,5	3,5
$1,61-2,39$	0,40	1,1	2,9	8,0	1,7	3,8
2,40 và lốn hơn	0,50	1,2	3,1	9,0	1,8	4,2

Dai hình lược cũng dược tính toán tương tự như dai hình thang.
Sơ gân

$$
\begin{equation*}
x \geqslant \frac{10 \mathscr{R} \mathrm{~K}_{\mathrm{d}}}{[\mathcal{R}]} \tag{13-41}
\end{equation*}
$$

trong đó $[\mathcal{R}]$ - công suât truyên được bải đai hinh lược có 10 gain , tính theo công thức (13-40), trong đó \mathcal{R}_{o} - công suất truyến được bơi 1 đai hình lược có 10 gân làm viẹc với tỷ sơ truyên $\mathrm{u}=1$, gớ $0 \mathrm{om} \alpha_{1}=180^{\circ}$, chiếu dài đai L_{o} và tải trọng tînh (tra bảng 13.14).

Công suất \mathcal{R}_{o} truyên duợ bói 1 dai hình luọc
Bảng 13.14

13.5.4. Tính dai răng

Đơi vá̛i bọ truyền dai răng, các thông só hình học chủ yếu là mơun $\mathrm{m}=\mathrm{t} / \pi$, t - bước của đai (hình 13.2), số răng của đai X_{d} và chiếu dài đai L . Mơưn được chọn theo mômen xoấn T_{1} trên trục nhanh (bảng 13.15).

Dường kính bánh đai

$$
\begin{equation*}
d_{1}=m Z_{1} ; d_{2}=m Z_{2} \tag{13-42}
\end{equation*}
$$

trong đó Z_{1} và Z_{2} - số răng của bánh đai
Só răng bánh dai nhỏ Z_{1} chọn theo môaun (bảng 13.15). Só răng bánh lớn

$$
\begin{equation*}
\mathrm{Z}_{2}=\mathrm{Z}_{1} \cdot \mathrm{u} \tag{13-43}
\end{equation*}
$$

Thường chọn sơ bọ khoảng cách trục a

$$
\begin{equation*}
a=(0,5 \div 2,0)\left(d_{1}+d_{2}\right) \tag{13-44}
\end{equation*}
$$

sau đó định so bộ chiéu dài L' của đai theo công thức (13-4).
Theo trị so L tính sơ bọ sơ rang Z_{a} của đai

$$
\begin{equation*}
\mathrm{Z}_{\mathrm{d}}^{\prime}=\mathrm{L} /(\pi \mathrm{m}) \tag{13-45}
\end{equation*}
$$

và qui tròn theo các số liệu chuấn : $32,40,50,63,80,100,125,160$. Xác định chiêu dài đai theo trị só Z_{d} tiêu chuấn

$$
\begin{equation*}
\mathrm{L}=\pi \mathrm{m} \mathbf{Z}_{\mathbf{d}} \tag{13-46}
\end{equation*}
$$

Bang 13.15
Các thơng só của dai răng Liên Xo cū

Thong so	Mo đun m, mm					
	2	3	4	5	6	7
Mômen trên bánh nhò	$\leqslant 2.10^{2}$	$\leqslant 24.10^{2}$	$\leqslant 22.10^{3}$	$\leqslant 49.10^{3}$	$\leqslant 19.10^{4}$	$\leqslant 19.10^{5}$
T_{1}, N.mm			15*			
Cương đọ lự vòng cho	5	10	$\frac{15}{25}$	35	45	60
phép $\mathrm{q}_{0}, \mathrm{~N} / \mathrm{mm}$			16-22*			
S 6 răng bánh nhỏ Z_{1}	12-20	14-20	$\frac{16-24}{18-24}$	18-24	22-36	22-36
Sórang dai Z_{d}	32-125	36-160	40-160	45-140	45-125	50-100
Chiêu rộng đai b , mm	8-16	12,5-25	20-40	25-50	50-80	50-80
	0,0032	0,004	0,005	0,0075	0,009	0,011
$1 \mathrm{~mm} \mathrm{q}_{\mathrm{m}}, \mathrm{kg} / \mathrm{m} . \mathrm{mm}$						
* Tử s σ là các trị so của đai răng có đường kính cáp $0,35 \mathrm{~mm}$; mã̉u sơ là các trị só của đai rảng có đường kính cáp $0,65 \mathrm{~mm}$.						

Theo trị só L tính lại khoảng cách trục a.
Tính só răng dai ăn khớp vơi bánh nhỏ

$$
\begin{equation*}
Z_{d 1}=Z_{1} \alpha_{1} / 360^{\circ} \tag{13-47}
\end{equation*}
$$

trong đó $\alpha_{1}-$ gợ ôm của đai trên bánh nhỏ. Nên lấy so răng đai $Z_{\text {di }} \geqslant 6$. Nêu $\mathrm{Z}_{\mathrm{d} 1}<6$ cần tăng khoảng cách trục a.

Từ điếu kiẹn bến xác định chiêu rộ̣ng b của đai cần thiêt đế truyên được lực vòng F_{t}

$$
\begin{equation*}
b \geqslant \frac{F_{1} \cdot k_{d}}{[q]-q_{m} v^{2}}=\frac{2 T_{1} \cdot K_{d}}{d_{1}\left([q]-q_{m} v^{2}\right)}, \tag{13-48}
\end{equation*}
$$

trong đó [q] - cường độ lực vòng cho phép, là lực vòng có thể truyên được qua 1 mm chiéu rộng của đai răng :

$$
[q]=q_{o} \cdot C_{u} \cdot C_{z}
$$

q_{o} - cường độ lực vòng cho phép khi $u \geqslant 1$, so bánh đai $x_{b}=2$ và $Z_{d i} \geqslant 6$ (bảng
 $\mathrm{C}_{\mathrm{u}}=1 ; \mathrm{C}_{2}$ - hệ sớ xét đđên sơ rảng ăn khơp vá̛i bánh nhỏ $\mathrm{Z}_{\mathrm{d} 1}$, ứng với $\mathrm{Z}_{\mathrm{d} 1}=6$; 5 và 4 lấy $\mathrm{C}_{\mathrm{z}}=1 ; 0,8$ và 0,6 ;
K_{d} - hệ sớ tải trọng động (bảng 13.7) ; v-vận tớc của đai ;
q_{m} - khới lượng 1 mét đai rộng 1 mm (bảng 13.15)
Chiếu rộng đai phải quy tròn theo các trị só tiêu chuẩn (mm) ; $8 ; 10 ; 12,5 ; 16$; $20 ; 25 ; 32 ; 40 ; 50 ; 63 ; 80$.

Truyến động đai râng không yêu câu lực căng đai lớn. Lực căng ban đấu chỉ cần lon hơn lựe ly tâm mọt ft.

$$
F_{o}=(1,1 \div 1,3) F_{l t}=(1,1+1,3) q_{m} v^{2} b
$$

13.6. TRÌNH TỰ THIÉT KE BỌ TRUYÊN DAI. THÍ DU

13.6.1 Trỉnh tự thiết ke bộ truyên dai dệt

1. Chọn loại đai tùy theo điếu kiẹn làm viẹc.
2. Định đường kinh bánh đai nhỏ d_{1} (nếu chưa cho trước) theo công thức (13.1).

Kiếm nghiệm vận tớc đai theo điéu kiên

$$
\begin{equation*}
v=\frac{\pi d_{1} n_{1}}{60 \cdot 1000} \leqslant(25 \div 30) \mathrm{m} / \mathrm{s} \tag{13-49}
\end{equation*}
$$

Nếu vận tớc đai quá lớn phâi giảm đường kính bánh đai.
3. Tinh đường kinh bánh dai lơn theo công thức (13-2). Nen láy d_{1} và d_{2} theo các trị sơ tiêu chuẩn gần nhá̛t. Tính lại sơ vòng quay thực n_{2} của bánh bị dẫn

$$
n_{2}^{\prime}=(1-\xi) n_{1} d_{1} / d_{2}
$$

Nêu n_{2}^{\prime} chênh lệch nhiêu so với n_{2} yêu câu (trên $3+5 \%$) cấn chọn lại d_{1} và d_{2}.
4. Xác định khoàng cách trục a và chiếu dài đai L . Có thế chọn a theo chiéu dăi tỡi thiễu của đai

$$
\mathrm{L}_{\min }=\mathrm{v} /(3 \div 5)
$$

sau đơ tính a theo $\mathrm{L}_{\text {min }}$ [công thức (13-5)]

Kiêm nghiệm điêu kiện

$$
a \geqslant 2\left(d_{1}+d_{2}\right)
$$

Nếu không thỏa mãn điêu kiẹn này, cền lấy $a=2\left(d_{1}+d_{2}\right)$ và tính lại L theo a [cồng thức (13-4)]. Dế nới đai, sau khi tính xong cần tăng chiéu dài đai thêm $100 \div 400 \mathrm{~mm}$, tùy theo cách nối.
5. Tinh góc ôm α_{1} \{công thức (13-3)\} và kiểm nghiẹm điếu kiện

$$
\alpha_{1} \geqslant 150^{\circ}
$$

(đỡi với đai bẩng chất dẻo $\alpha_{1} \geqslant 120^{\circ}$), nếu không đậ cẩn tång khoâng cách trục a hoạc dùng bánh căng đai.
6. Xác định chiếu dảy và chiếu rộng đai. Chọn trước chiếu dày h của đai (xem mục 13.5.2) lây theo các trị số tiêu chuẩn. Chiêu rộng b của đai tính được theo công thức $(13-37)$ và lấy theo tiếu chuá̛n.
7. Tính chiêu rợng B của bánh đai (xem mục 13.2.2).
8. Tính lực tác động lên trục theo công thức (13-16).

13.6.2. Trính tự thiét kê bộ truyến dai hình thang

1. Chọn loại đai (tiét diện đai) theo mômen xoán trên trục quay nhanh $\mathrm{T}_{1}=9550 . \mathcal{R}_{1} / \mathrm{n}_{1}(\mathrm{~N} . \mathrm{m})$ (báng 13.5). Nên chọn vài ba phương án đé so sánh và quyết định.
2. Định đường kính bánh đai nhó $\mathrm{d}_{1} \approx 1,2 \mathrm{~d}_{1 \text { min }} ; \mathrm{d}_{1 \text { min }}$ tra theo báng 13.5 tùy theo loại đai được chọn. Tính đường kính bánh đai d_{2}. Các trị so d_{1} và d_{2} nên lấy theo tiêu chuân. Kiềm nghiệm lại só vòng quay thực \mathbf{n}_{2}^{\prime} của bánh lơn (nhu đới với đai dẹt). Tính vạn tớc V của đai.
3. Khoảng cách trục a đực lây theo yéu câu cưa kết câu máy hoạc chọn theo bảng 13.16 theo ty so truyen u.

Bang 13.16
Chọn khodng cach truc a cüa dai hình thang

u	1	2	3	4	5	$\geqslant 6$
$\mathrm{a} / \mathrm{d}_{1}$	1,5	2,4	3	3,8	4,5	5

Khoảng cách trục a cần thỏa măn điêu kiện

$$
2\left(d_{1}+d_{2}\right) \geqslant a \geqslant 0,55\left(d_{1}+d_{2}\right)+h
$$

4. Tính chiốu dài đai L theo khoảng cách trục a [công thức (13-4)] và quy tròn L theo các trị so tiêu chuấn.
5. Xác đỉnh chinh xác khoảng cách trục a theo L tiêu chuân [công thức (13-5)].
6. Tînh gơc ốm a_{1} [công thức (13̣-3)] và kiếm nghiệm điêu kiện

$$
\alpha_{1} \geqslant 120^{\circ}
$$

(Trong trường họp cấn thiết cơ thê lấy $\alpha_{1} \geqslant\left(70^{\circ} \div 90^{\circ}\right)$, tuy nhiên lúc này C_{α} khá thắp - xem bảng 3.11).
7. Xác định số dai cần thiért x theo công thức (13-39). Só dai x không nên quá $5 \div 6$ đai đới với các tiết diện $\mathrm{O}, \mathrm{A}, \mathrm{B}, \mathrm{B}$ và $\mathrm{YO}, \mathrm{YA}, \mathrm{không}$ nên quá $8 \div 12$ đới với các tiết diện đai còn lại. Số đai càng lớn thì sự phân bó tải trọng giữa các đai càng không đếu.

So sánh các phương án đã tính toán (vể kích thườc, sớ dai) đẻ chọn phưong án thich hợp.
8. Tính chiêu rộng bánh đai B (xem mục 13.2.2),
9. Tînh lực tác dụng lên trục

$$
\begin{equation*}
F_{r}=2 F_{o} \times \sin \left(\alpha_{1} / 2\right) \tag{13-50}
\end{equation*}
$$

trong đơ : F_{o} - lực căng ban đâu của 1 đai $; \mathrm{F}_{\mathrm{o}}=\sigma_{\mathrm{o}} \mathrm{A}_{1} ; \mathrm{A}_{1}$ - diện tịch tiết diện 1 đai, $\mathrm{mm}^{2} ; \sigma_{\mathrm{o}}$ - ứng suất cāng ban đầu, co thế lấy $\sigma_{0}=1,2 \mathrm{MPa}$.

13.6.3. Thí dụ

Thiết kế bợ truyên đai hình thang truyen dẫn từ đọng cơ điện đến hộp giảm tớc theo các só liệu sau : công suất $\mathcal{R}_{1}=5,5 \mathrm{~kW}$, sô vòng quay trong 1 phút (tần só quay) của trục dẫn $n_{1}=1440 \mathrm{vg} / \mathrm{ph}$; sơ vòng quay của trục bị dẵn $n_{2}=550 \mathrm{vg} / \mathrm{ph}$, vời sai sơ cho phép $\pm 4 \%$; tải trọng ớn định, bộ truyến làm việc 1 ca.

Giải

1. Chọn loại đai. Tinh mômen xoán trên trục dā̃n

$$
T_{1}=9550 \cdot \frac{5,6}{1440}=36,476 \mathrm{~N} \cdot \mathrm{~m}
$$

Theo bảng 13.5 có thế chọn đai hình thang A hoạc đai hình thang hẹp YO. Ta tính toán theo hai phưong an.
2. Dịnh đường kính bánh đai

Đường kính bánh đai nhỏ $\mathrm{d}_{1} \approx 1,2 \mathrm{~d}_{1 \text { min }}, \mathrm{mm}$ ($\mathrm{d}_{1 \text { min }}$ A YO ra theo bảng 13.5), lấy theo tiêu chuẩn. Tỷ số truyén $\mathrm{u}=1440 / 500 \approx 2,6$. Đường kính bánh đai lớn $\mathrm{d}_{2}=\mathrm{ud}_{1}$, mm láy theo tiêu chuẫ.

Tinh lại số vòng quay thự $\mathrm{n}^{\prime}{ }_{2}$, $\mathrm{vg} / \mathrm{ph}$ sai só vòng quay $\frac{567-550}{550} \approx 3 \%$ nhỏ hơn trị só cho phép.

Vận tốc đai $v=\pi \mathrm{d}_{1} \mathrm{n}_{1} / 60.1000, \mathrm{~m} / \mathrm{s}$.
3. Khoảng cách trục a chọn theo bảng 13.15 , với $\mathbf{u}=2,6$ lây $a=2,8 \mathrm{~d}_{1}, \mathrm{~mm}$

Khoảng cách trục a thoả măn điếu kiện

$$
2\left(d_{1}+d_{2}\right) \geqslant a \geqslant 0,55\left(d_{1}+d_{2}\right)+h
$$

4. Tính chiêu dài đai L, mm theo công thức (13-4) ; và quy tròn theo tiéu chuẫn.
5. Xác định chính xác khoảng cách trục a, mm, theo công thức (13-5).
6. Tính goc om α_{1} theo cong thức (13-3). $\alpha_{1}>120^{\circ}$.
7. Xác dịnh so dai cần thiớt x theo cong thức (13-39)

$\mathcal{R}_{o^{\prime}}, \mathrm{kW}$	(hình 13.15)
C_{α}	(bång 13.11)
C_{L}	(bảng 13.12)
$\Delta \mathrm{T}_{1}$, N.m	(bảng 13.13)
[\mathcal{R}, kW	
K_{L}	(bảng 13.7)
	Tính được x

Láy só đai

8. Chiếu rợng bánh đai B

$$
\begin{array}{lc}
\mathrm{t}, \mathrm{~mm} & \text { (bảng 13.6) } \\
\mathrm{S}, \mathrm{~mm} & \text { (bảng 13.6) } \\
\mathrm{B}=(\mathrm{x}-1) \mathrm{t}+2 \mathrm{~S}, \mathrm{~mm}
\end{array}
$$

9. Tinh lực tác dụng lên trục F_{r}, N

1,2	1,4
0,92	0,92
0,91	0,90
1,2	1,8
1,18	1,43
1	1
4,7	3,8
5	4

15	12
10	8
80	52
940	520

Két luạn : Chọn phương án đai YO so đai it hon, kích thước gọn hơn và lực tác dụng lên trục nhỏ hơn so vói phương án dai A.

Chưong 14

TRUYÈN ĐỘNG VIT - ĐAI ÓC

14.1. KHÁI NIẸM CHUNG

14.1.1. Các loại truyên dọng vit-dai óc

Truyên đọng vit - đai ơ c được dùng đê đơi chuyến đọng quay thành chuyển động tịnh tién.

Tùy theo dạng chuyên động của vit và đai óc có thể chia ra các loại : vít 1 quay và tịnh tiến, đai oc 2 co định với giá, như trương họp vit ép trê hình 14.1 a , hoặ đai oc 2 quay còn vit 1 tịnh tiên, (hinh 14.1.b) hoạc vit quay dai óc tịnh tiên như trên hinh 14.1 c (vit chạy dao trong máy tiện...). Ngoài ra có loại truyén động vít - đai ôc có đai óc vừa quay vừa tịnh tiên còn vit cớ dịnh, nhưng ít đự̛̣ düng.

Giữa vận tốc tịnh tiến của vít $\mathrm{v}(\mathrm{m} / \mathrm{s})$ và số vòng quay trong 1 phút $\mathrm{n}(\mathrm{vg} / \mathrm{ph})$ çủa đai ốc (hình 14.1.b) có hệ thức

Hình 14.1

$$
\begin{equation*}
\mathrm{v}=\frac{\mathrm{nZP}}{60.1000} \mathrm{~m} / \mathrm{s} \tag{14-1}
\end{equation*}
$$

trong đó : Z - số mối ren ; P - bước ren, mm.
Truyến động vit - đai ớc rất có lọi vê lực và có thê thực hiện được các dịch chuyển chậm và chính xác.

Ren dùng trong truyển động vít - đai ớc thường là các loại ren có góc profin khá nhỏ như ren hình thang, ren răng cưa, ma sát tương đối nhỏ, hiệu suất cao. Trong các cơ cấu truyên lực theo hai chiêu người ta thường dùng ren hình thang, có độ bến khá cao. Ren răng cưa được dùng trong các bộ truyến chịu lực 1 chiếu lớn (trong vít kích, máy ép v.v...).

Ren tam giác có bước nhỏ được dùng trong các khí cụ để thực hiện các dịch chuyển chính xác, ở đây không quan tâm lám đến hiệu suất truyên động.

Đối với các bộ truyến đòi hỏi chuyển vị rất chính xác người ta dùng ren hình thang có góc profin nhỏ và ren vuông. Các loại ren này có ưu điểm là độ chính xác dịch chuyển it chịu ảnh hưởng của di động hướng tâm của vít, ngoài ra mất mát do ma sát cũng khá nhỏ. Tuy nhiên vl khó chế tạo cho nên ren vuông ngày càng it dùng.

14.1.2 Ưu, nhược diểm

Truyển động vit - đai ốc có các ưu điểm :

- Cấu tạo đơn giản, thắng lực lớn, thực hiện được dịch chuyển chậm.
- Kích thước nhỏ, chịu được lực lớn.
- Thực hiện được các dịch chuyển chính xác cao.

Nhược điểm là :

- Hiệu suất thấp do ma sát trên ren.
- Chóng mòn ;

Trong truyên động vít - đai ớc công suất bị mất mát chủ yếu do ma sát trên ren. Hiệu suất của bộ truyên (đởi quay thành tịnh tiến) được tính theo công thức:

$$
\begin{equation*}
\eta=\frac{\operatorname{tg} \gamma}{\operatorname{tg}(\gamma+\rho)} \tag{14-2}
\end{equation*}
$$

trong đó : γ - góc vít của ren ;

Hinh 14.2

Dê tăng hiệ̣u suất và giảm mòn gẫn dây người ta dùng truyễn động vit - đai ớc bi, nhờ đó ma sát trượt trên ren được thay thế bằng ma sát lăn. Hỉnh 14.2 trình bày kết cấu một loại truyến động vít - đai ơc bi. Trên vít và đai ôc có rănh xoán chứa các viên bi ; khi làm việc, bi lăn trong rãnh. Bi chuyến động liên tục nhờ có ơng dẫn nới thông các vòng rănh đầu và cươ của đai ơc. Hị̣̂u suá̛t của truyên động vít - đai óc bi co thé đat 0,9 .

14.1.3 Vạt liệu

Ngoải yêu cấu vê độ bên, vật liệu làm vit cẩn có độ bên mòn cao và dể gia công. Vit khong tôi được làm bàng thép CT5, 35, 45, 50. Vit tôi đượe lạ̀m bà̀ng thép 45,50 , $40 \mathrm{X}, 40 \mathrm{XH}, 50 \mathrm{XP}$ v.v... 'TOi có đọ rấn không thấp hơn 50 HRC .

Dai of thường được làm bằng đông thanh thiêc В ВОФ 10-1, БpOLC 6-6-3 v.v... Trường họ̣p tải trọng nhỏ và vận tớc thắp có thê dùng gang xám CY 15-32, CY 18-36 v.v... Dế tiêt kiệm đờng co thé ché tạo dai oc co vó ngoài bà̀ng gang hoặc thép bên trong lớt đơng (dùng cách đúc ly tam).

14.2. TINH TRUYÊN DỐNG VÍT - DAI ÓC

Thựe nghiệm cho thắy truyện động vit - đai ơc thường bị hỏng do mòn ren. Đê giảm mòn cân chọn vật liẹu vít và đai ớc thích họp, bôi trơn đầy đủ và tính toán dé hạn chê áp suát trên ren.

Ngoài hiện tượng hơng vl mòn, bộ truyến có thể bị hỏng do không đủ độ bến (các vit chịu lực lớn...) hoạc khơng ớn định (các vít dài bị uón dọc).

14.2.1. Tính theo dộ bến mòn

Phương pháp tính theo độ bên mòn được dùng cho phẩn lớn câc bộ truyên vít đai of đé xác định đường kính vít và chiếu cao đai óc.

Dế giàm mờn, áp suất p trện mặt ren không được quá trị sơ cho phép [p].

$$
\begin{equation*}
p=\frac{F_{a}}{\pi d_{2} h x} \leqslant[p] \tag{14-3}
\end{equation*}
$$

trong đớ $\mathrm{F}_{\mathbf{a}}$ - lực tác dụng dọc trục, d_{2} - đường kính trung binh của vit ; h - chiếu cao làm, việc của ren, $h=\psi_{h} P$, đới vóai ren hỉnh thang $\psi_{h}=0,5$; đới với ren răng cưa $\psi_{h}=0,75 ; P-$ bước ren ; $\mathrm{x}-\mathrm{s}$ © vòng ren của đai ốc ; $\mathrm{x}=\mathrm{H} / \mathrm{P} ; \mathrm{H}$ - chiếu cao dai oc.

Thay $h=\psi_{h} \mathbf{P}$ và $x=H / P$ vào cong thức (14-3)

$$
\begin{equation*}
p=\frac{F_{a}}{\pi \mathrm{~d}_{2} \psi_{h} \cdot H} \leqslant[p] \tag{14-4}
\end{equation*}
$$

Đạt $H=\psi_{H} \cdot d_{2}$, cong thức xác định đường kính trung bình d_{2} của đai có dạng

$$
\begin{equation*}
d_{2} \geqslant \sqrt{\frac{F_{a}}{\pi \psi_{H} \psi_{h}[p]}} \tag{14-5}
\end{equation*}
$$

Trị só ψ_{H} thường láy trong khoảng $1,2 \div 2,5$.

Áp suất cho phép [p] đơi với thép tơi - đông thanh $11 \div 13 \mathrm{MPa}$, dơi với thép không tồ - đông thanh $8 \div 10 \mathrm{MPa}$, đơi với thép không tôi - gang $4 \div 6 \mathrm{MPa}$. Trong các co ca̛u dịch chuyến chính xác (như trong bộ phạn phân độ của máy cất kim loại v.v...), [p] lay bà̀ng $1 / 3 \div 1 / 2$ các trị só trễn.

Sau khi tính được đường kinh trung binh d_{2} phài lấy tròn theo trị so gần nhất trong tiêu chuẩn và từ đớ tra các kich thước khác. Đường kinh D của đai σ có thê láy bằng ($3 \div 3,5$) d , d - đường kính ngoài của ren vit.

14.2.2 Tính theo dộ bên

Đới với các vít chịu tải lớn cẫn kiễm tra đọ bên vit đồng thời chịu nên (hoạ̣c kéo) và xoấn cho nên phài tính ứng suăt tương đương $\sigma_{\text {tơ }}$ và kiếm nghiệm điếu kiện

$$
\begin{equation*}
\sigma_{\mathrm{td}}=\sqrt{\mathrm{s}^{2}+3 \mathrm{t}^{2}} \leqslant[\sigma] \tag{14-6}
\end{equation*}
$$

trong dó σ - ưng suất do lực dọc trục F_{a} gây nên

$$
\sigma=\frac{4 \mathrm{~F}_{\mathrm{a}}}{\pi \mathrm{~d}_{1}^{2}}
$$

τ - ưng suât do momen xoân T gay nên

$$
\tau=\frac{T}{W_{o}}=\frac{16 T}{\pi \mathrm{~d}_{1}^{3}}
$$

d_{1} - đường kính trong của ren vit ; W_{o} - mơmen cản xoán của vit. Ững suât cho phép $[\sigma]=\sigma_{c h} / 3 ; \sigma_{c h}$ - giói hạn chảy cưa vạt liệu vit.

14.2.3. Tính theo diôu kiẹn on dịnh

Trường hợp vit bị nán , và tựơng đơi dài (chiêu dài tương đương của vit $\mu \mathrm{l}>\mathrm{Td}_{1}$), cên kiêm tra theo dieu kiẹn on dinh (tinh vé uon dop).

Đe vit khong hơng do uờn dọc, lực nén F_{a} phâi thỏa mãn đieu kiẹn ơn định Ole.

$$
\begin{equation*}
\mathrm{F}_{\mathrm{a}}=\pi^{2} \mathrm{EJ} / \mathrm{S}(\mu \mathrm{l})^{2} \tag{14-7}
\end{equation*}
$$

trong đó E - mơun đàn hơi của vit ;
$J=\pi d_{1}^{4} / 64-$ mômen quán tính cua tiét diẹn vit ;
$S=2,5+4$ - hẹ so an toàn ve on dịn ;
$\mu \mathrm{l}$ - chiôu dải tương đương của vit, đơi với vít co hai gơi tựa, 1 là khoảng cách giữa hai gơi tựa ; đơi vơi vit co một gơi tựa thil dai oc đực coi như goi tựa thử hai và 1 là khoâng cách từ nửa chiêu cao đai oc dơn goi tựa kia; hệ so μ có thé xem
 trự̛̣ có tỷ so chiêu dải $\delta 1_{0}$ với đường kinh $\delta \mathrm{d}_{\mathrm{o}}: 1_{\mathrm{o}} / \mathrm{d}_{\mathrm{o}} \leqslant 2$, gơi tựa được coi như "bàn le" và $\mu=1$.

Người ta dùng công thức (14-7) khi $\mu \mathrm{l} \geqslant 100 \mathrm{j}$ hoặc $\mu \mathrm{l} \geqslant .25 \mathrm{~d}_{1}$, trong dó $j=\sqrt{J / A} \approx d_{1} / 4-$ bán kính quán tính của tiết diẹn vit ; A - diện tich tiết diện vit.

Đẻ̛ đơn giản, có thế kiêm nghiệm vit có chiêu dải bát kỳ theo điéu kiẹn chung vê bên và ơn định

$$
\begin{equation*}
\sigma_{\mathrm{n}}=\frac{4 \mathrm{~F}_{\mathrm{a}}}{\pi \mathrm{~d}_{1}^{2}} \leqslant \varphi\left[\sigma_{\mathrm{n}}\right] \tag{14-8}
\end{equation*}
$$

trong đó: $\left[\sigma_{\mathrm{n}}\right]$ - ưng suá̛t nén cho phép, có thể láy bàng $\sigma_{\mathrm{ch}} / 3$
$\sigma_{c h}$ - giáai hạn chảy.
φ - hẹ sơ giám ứng suât cho phép, phụ thuộc dộ mém $\mu \mathrm{l} / \mathrm{j}$ của vit, φ tra trong bảng dưới đây, các trị số bảng dươi dùng cho các mác thép cơ độ bên cao.

$\frac{\mu \mathrm{l}}{\mathrm{j}}$	30	40	50	60	70	80	100	120	140	160
φ	0,91	0,89	0,86	0,82	0,76	0,70	0,51	0,37	0,29	0,24
	0,91	0,87	0,83	0,79	0,72	0,65	0,43	0,30	0,23	0,19

14.3. THÍ DU

Tính vít của kích chịu tài trọng $F_{a}=150.000 \mathrm{~N}$, chiêu dải làm viẹc của vít $1=1000 \mathrm{~mm}$, gơi tựa là δ bi chặn và xác định hiệu suắt của vit kích. Vit cần tự hăm, dùng ren răng cưa.

Gidi

1. Chọn vật liẹu vit - thêp 35, vật liệu đai óc ; gang CY18-36.
2. Xác định đường kinh trung bình của vít theo điếu kiện bên mòn [cơng thức $(14-5)]$. Láy áp suât cho phép $[\mathrm{p}]=6 \mathrm{MPa} ; \psi_{\mathrm{H}}=2 ; \psi_{\mathrm{h}}=0,75$ (ren răng cưa), ta dự̛̣

$$
\mathrm{d}_{2} \geqslant \sqrt{\frac{150000}{3,14 \cdot 2 \cdot 0,75 \cdot 6}} \approx 73 \mathrm{~mm}
$$

Theo tiêu chuấn, ûng với aường kính d_{2} ha̛i lớn hơn 73 mm có thế chọn các bước ren 5,12 và 20 mm . Ren có bước $P=5 \mathrm{~mm}$ quá nhó, chóng mòn hóng. Ta chọn bước ren 12 hoạc 20 mm tùy điêu kiện đám bảo tự hâm : góc vit γ phải nhỏ hơn gơc ma sát ρ.

Dơi với vit được boi da̛u, lấy hệ sơ ma sát $f=0,1$ ta cơ

$$
\rho=\operatorname{arctgf}=5^{\circ} 40^{\prime}
$$

Dơi với ren có bước $P=12 \mathrm{~mm}\left(\mathrm{~d}_{2}=76 \mathrm{~mm}\right)$, goc vit

$$
\gamma=\operatorname{arctg} \frac{P}{\pi \mathrm{~d}_{2}}=\operatorname{arctg} \frac{12}{3,14 \cdot 76} \approx 2^{\circ} 50^{\prime}
$$

thỏa mån điêu kiện tự hå̀m $\gamma<\rho$.

Dơi với ren có bươc $P=20 \mathrm{~mm}$ ($\mathrm{d}_{2}=75 \mathrm{~mm}$)

$$
\gamma=\operatorname{arctg} \frac{20}{3,14.75} \approx 5^{\circ}
$$

khong an toàn vê tự hăm (vì γ xấp xi bàng ρ).
Vậy chọn ren răng cưa $85 \times 12 ; \mathrm{d}=85 \mathrm{~mm} ; \mathrm{P}=12 \mathrm{~mm} ; \mathrm{d}_{1}=64,2 \mathrm{~mm}$; $\mathrm{d}_{2}=76 \mathrm{~mm} ; \mathrm{h}=9 \mathrm{~mm}$.
3. Tính chiêu cao đai \quad c H . Theo cong thức (14-3) tim so vòng ren đai 6 c

$$
x=\frac{150000}{\pi \cdot 76 \cdot 9 \cdot 6} \approx 12
$$

Vậy $H=x t=12.12=144 \mathrm{~mm}$
Hẹ so chiêu cao đai $\delta \mathrm{c} \psi_{\mathrm{H}}=\mathrm{H} / \mathrm{d}_{2}=144 / 76=1,9$, trong khoảng cho phép là $1,2 \div 2,5$.
4. Vì vít khá dài và chịu lực nên lớn cho nên phải kiếm tra vê độ bên và ớn định. Tính gần đúng theo điếu kiện (14-8), vá̛i vật liệu vit là thép 35 co $\delta_{c h}=300 \mathrm{MPa}$; $\left[\sigma_{n}\right]=300 / 3=100 \mathrm{MPa}$; hẹ so φ tra theo $\mu \mathrm{l} / \mathrm{j}=4 \mathrm{~L} / \mathrm{d}_{1}=4.1000 / 64,2=62$, vạy $\varphi=0,8$

Ta có

$$
\sigma_{n}=\frac{4 \cdot 150000}{3,14 \cdot(64,2)^{2}}=46,5 \leqslant 0,8 \cdot 100=80 \mathrm{MPa}
$$

5. Xác định hiẹu suất của vit kích theo công thức (14-2) (bỏ qua khồng chú ý đến ma sát trong 6 bi chặn vi khá nhó).

$$
\eta=\frac{\operatorname{tg} y}{\operatorname{tg}(\gamma+\rho)}=\frac{\operatorname{tg} 2^{\circ} 50^{\prime}}{\operatorname{tg}\left(2^{\circ} 50^{\prime}+5^{\circ} 40^{\prime}\right)}=0,33
$$

Phân thứ tư

TRỤC, Ồ TRỤC, KHỚP NỐI VÀ LÒ XO

Chutong 15

TRUC

15.1. KHÁI NIẸM CHUNG

15.1.1. Công dụng và phân loại trục

Trục được dùng đé đỡ các tiết máy quay như bánh răng, đỉa xich v.v..., để truyên mômen xoấn hoạc đế thực hiẹn cả hai nhiệm vụ trên.

Theo đạ̣c điêm chịu tải, trục được chia ra hai loại ; trục truyến và trục tâm.

Truc truyên vừa đơ các tiết máy vừa truyên mômen xoản, nghia là chịu cả mômen uớn lẫn momen xoân. Vi dụ trên hình 15.1 trinh bày trục truyên 2 đá bánh răng 1 và khới nơi 3 ; mômen xoấn được truyên từ khớp nơi qua trục sang bánh răng.

Khác với trục truyên, trục tâm chi chịu mômen uơn. Trên hinh 15.2 giơi thiệu tang quay của máy nang chuyễn, mômen được truyên từ vành răng qua tang quay sang dây cáp. Truc tam có thế quay (hinh 15.2 a) hoạc không quay (hỉnh

Hinh 15.1 15.2b).

Ngoài ra còn có trục truyên chung là trục chi chịu mômen xoán, dùng để truyến mômen xoán đến bộ phận cồng tác của máy (ví dụ trong máy nông nghiệp, máy làm đưừng v.v...).

Theo hỉnh dạng dường tâm trục, chia ra : trục thả̉ng (hình $15.3 \mathrm{a}, \mathrm{b}$) trục khuỷu (15.3c) và trục mêm. Trục khuỷu được dùng trong các máy có pit tông (dộng co dớt trong, máy bơm pít tông v.v...). Trục mém có độ uớn cong khá lớn, được dùng đé
truyên chuyên động quay và mômen xoắn giữa các bộ phận máy hoạ̣c giữa các máy có vị trí thay đởi khi lả̉m việc (ví dụ trục mêm dùng trong máy chưa răng). Trục khuỷu và trục mêm thuợc loại chi tiết máy có công dụng riêng, được trình bày trong các giáo trình chuyên môn.

Hinh 15.2
Theo cấu tạo chia ra : trục tron (hình 15.3a) và trục bậc (hỉnh 15.3 b) ; trục dạ̣c và truc rỗng.

Trục làm việc tớt hay xâu có ảnh hưởng trực tiếp đến sự làm việc của các tiết máy lâp trên trục hoạc của cá bọ máy. Khi thiét kê trục cần xét đên các vấn đê vê kêt câu, độ bên, độ cứng và dao động của trục. Ngoài ra còn phài chú ý tới qui trình công nghệ che̛ tạo, nhiẹt luyện trục và các biện pháp sử dụng, bảo dưỡng trục v.v..., là các nhan tơ cơ ânh hường lớn đé̛n độ bến và tuơi thọ của truc.

15.1.2. Kết cắu của trục

Két cấu của trục đượe xác định theo

a)

Hinh 15.3 trị sơ và tỉnh hình phan bó lực tác dụng lên trục, cách bố trí và cơ định các tiết máy láp trên trục, phương pháp gia công và lấp ghép v.v...

Trục thường đự̛̣ chế tạo co dạng hinh trụ tròn nhiéu bạc (gôm nhiêu doạn có đường kinh khác nhau). It khi dùng truc trơn, cơ đường kính không đới theo chiêu dài vi không thích hợp vđ̛i đạ̣c điém phân bo ựng suât trong trục : ưng suât thay đới theo chiếu dài trục ; mặt khác lấp ghép và sưa chữa khó khăn, phức tạp.

Khí cần giảm khơi lượng co thể làm trục rỗng, tuy nhiên, giá thành che̛ tạo trục rông khá đát.

Tiét máy đở trục được gọi là ó trục. Phần trục tiép xúc vơi o trục gọi là ngơng trục. Phần trục để láp vói các tiết máy được gọi là than truc. Đường kinh ngông trục và than trục phải lấy theo trị số tiêu chuẩn để thuận tiện cho việc chế tạo và lấp ghép. Các trị só tiêu chuân của đuờng kinh (mm) ngơng truc lâp 6 lân : $15 ; 17$; $20 ; 25 ; 30 ; 35 ; 40 ; 45 ; 50 ; 55 ; 60 ; 65 ; 70 ; 75 ; 80 ; 85 ; 90 ; 95 ; 100$
v.v... Cac trị so tiêu chuân của dương kính (mm) thân trục lâp bánh răng, bánh dai, khơp nới v.v... $10 ; 10,5 ; 11 ; 11,5 ; 12 ; 13 ; 14 ; 15 ; 16 ; 17 ; 18 ; 19 ; 20 ; 21 ; 22 ; 24$; $25 ; 26 ; 28 ; 30 ; 32 ; 34 ; 36 ; 38 ; 40 ; 42 ; 45 ; 48 ; 50 ; 52 ; 55 ; 60 ; 63 ; 65$; $70 ; 75 ; 80 ; 85 ; 90 ; 95 ; 100 ; 105 ; 110 ; 120 ; 125 ; 130 ; 140 ; 150 ; 160$.

Đơ với các phàn trục không lấp các tiêt máy có thẻ̛ lấy dường kính theo các trị sơ không tiêu chuẩn. Khi định kích thược trục bậc, phải láy đường kính các đoạn trục sao cho mỡi tiết máy lắp lên trục cớ thể lồng qua các phần khác của trục cho tới chố cần lắp mà khơng bị vướng.

Hinh 15.4

Hình 15.5

Dể cơ định các tiết máy trên trục theo chiếu trục thường dùng vai trục, gờ, mặt hình côn, bạc, vòng chặn, đai óc hoạ̣c lấp bằng đọ dơi v.v... Vai trục (hình 15.4) có mặt định vị và góc lượn. Dế tiét máy cơ thế tỳ sát vào mặt định vị thì bán kính góc lượ r của vai trục phài nhỏ hơn bán kính góc lượn R của tiét máy (hinh 15.4 a). Góc lượn chō vai trục hoạ̉c chó chuyển tiếp các đoạn trục có đường kính khác nhau, nên chế tạo với bán kính lơn nhất trong phạm vi có thê, đé giảm bờ tập trung ứng suất. Người ta còn làm gớc lượn cơ dạng elip hoạc làm góc lươn như hình 15.4 b , trên dó có thêm rănh vòng.

Ghép bàng mặt côn thường dùng trong trường hợp tải trọng dọng hoặc va dập. Để giữ khoảng cách tương đơi giữa hai tiết máy, đơn giản nhất là dùng bạc (hinh 15.5). Dai óc, vòng hâm, kêt họp với ghép bằng đô dời thường dùng đé co định of lăn.

Dé̉ cơ đinh các tiết máy trên trục theo phương tiếp tuyên (giữ tiết máy không xoay tương đơi đơi với trục) thường düng then, then hoa hoạc ghép bàng độ dôi.

Vì trục chịu ứng suất thay aơí cho nên thường bị hòng do mỏi. Những vết nứt vì mơi thường sinh ra ở những chơ tập trung û́ng suât như chō thay đới dường kinh (vai trục, gờ), chố có rānh then, rãnh lùi đá mài, chô ghép bảng độ dôi v.v... Cấn chú y dừng các biện pháp làm giảm tập trung ứng suât, vi dụ như tăng bán kính góc lượn của vai trục, vát mép 10 trên trục v.v... Đơi với mơi ghép bằng đọ dôi có thê dùng cách vât mép may o hoạc tăng độ mêm của mép may o. Vê công nghẹ dùng các phương pháp lắn nén, phun bi, thấm than, nitơ hoạc xianua rồ tôi, gia công nhã́n bé mạt trục v.v... có thẻ̛ nâng cao độ bến mỏi của trục.

15.2. CÁC DẠNG HỎNG VA VÂT LIẸU TRỤC

15.2.1. Các dạng hỏng truc

Trục bị gãy hòng thường là do mơi. Nguyên nhân gãy trục có thé là :

- Trục thường xuyên làm việc quá tải, do khi thiết kê không đánh giá đúng tải trọng tác dụng.
- Sự tập trung ứng suát do kết cấu gây nên (góc lượn, rãnh then, lỡ v. v...), hoặc do chất lượng chế tạo xấu (vết xước do gia cơng xấu, kỹ thuật nhiệt luyện kém v.v...).
- Sử dụng không đúng kỹ thuật (6 trục điêu chinh không đúng, khe hở cần thiết quá nhỏ v.v...).

Trường hợp dùng 8 trượt, nếu tính toán và sử dụng sai, màng dầu không hình thành được, ngõng trục nóng lên nhiếu, lót trục bị mòn nhanh, bị dính hoạ̣c bị xước, kết quả là trục không làm việc được nữa.

Độ cững uốn của trục có ảnh hưởng lớn đến sự làm việc của các tiết máy truyên động và ổ trục. Nếu trục bị võng nhiêu, khe hở giữa ngõ̃ng trục vả ổ trượt thay đới, ảnh hưởng trực tiếp đến mảng dầu bôi trơn trong ở, đồng thời phá hỏng sự tiếp xúc chính xác giữa các tiết máy truyên động. Trục chính của máy cát kim loại không đủ độ cứng uớn sē ảnh hưởng đến độ chính xác và làm tăng độ nhám bế mật vật gia công.

Trong một số kết cấu có khi phải hạn chế biến dạng xoắn của trục (vi dụ như trục của co cấu di chuyên cầu lăn).

Trục còn có thẽ bi hỏng do dao động ngang và dao động xoắn, do đó có những trường hợp phải kiểm nghiệm trục vé daio động.

15.2.2. Văt liệu truc

Vật liệu dùng đế chế tạo trục cận cón đọ bên cao, ft nhạy với tập trung ûng suắt, có thê nhiệt luyện được và dễ gia công. Thép các bon và thép họ̣p kim là những vật liệu chù yêu để chế tạo trục.

Những trục chịu ứng suất không lớn lắm được ché tạo bầng thép CT5 không nhiệt luyện. Nếu yêu câu trục có khả năng tải tương đơi cao thỉ dùng thép $35,45,50$ v.v... nhiệt luyện, trong đớ thép 45 được dùng nhiếu nhất. Trường họp chịu ứng suất lợn, làm việc trong các máy quan trọng, trục được chê tạo bằng thêp $40 \mathrm{X}, 40 \mathrm{XH}, 40 \mathrm{XH} 2 \mathrm{MA}$, 30XГCA v.v... nhiệt luyện hoạ̣c tôi bế mạ̣t băng dòng điện tấn số cao.

Đơi với những trục quay nhanh, lấp ố trượt, ngōng trục cần có độ rấn cao thỉ dùng thép $20,20 \mathrm{X}$ thấm than rồi tôi ; nếu trục chịu ửng suát lớn, vận tốc rất cao thì dùng thép $12 \mathrm{XH} 3 \Omega, 12 \mathrm{X} 2 \mathrm{H} 4 \mathrm{~A}, 18 \mathrm{X} \Gamma \mathrm{T}$ thấm thản và tơi hoạc thép 38 X 2 M ЮA thấm nitơ và tôi.

Cân lưu ý ràng thêp họp kim nhiẹt luyện tuy co độ bên và độ rấn cao nhưng môdun đàn hỡi lại hẩu nhự không khác các loại thép các bon thông thưỡng. Do đó nếu theo điéu kiện độ bến đế thié̛t kê trục, kich thước trục bà̀ng thép hợp kim sê tưong đới nhơ, nhưng trục có thê không đủ đọ cứng cần thiét. Mặt khác, thép hợp kim khá đát và nhạy với tập trung ứng suât. V1 vậy chl khi nào thậ cần thiết (cần giảm kích thước và khối lượng trục, nâng cao tính chớng mòn của ngõng trục...) và xét tháy aọ cứng cần thiết của trục vẫn được đảm bảo, thì mới dùng thép hợp kim đê chê tạo trục.

Khi chế tạo trục thường dùng phôi cán hoặc phôi rèn, rất it dùng phôi đúc.
Bảng 15.1 cho trị sớ trung binh vế cơ tính của một só mác thép Liên Xô cũ ché tạo trục.

Bảng 15.1
Co tinh mọt số mác thép ché tạo trục

Mác thép	Đường kính phồi, mm	Dộ rán, HB	Gióói hạn bến σ_{b} MPa	Giới hạn cháy $\sigma_{c h}$ MPa	Nhiệt luyện
CT5	$\begin{aligned} & \text { Dưới } 100 \\ & 100-300 \end{aligned}$	-	$\begin{aligned} & 550 \\ & 470 \end{aligned}$	$\begin{aligned} & 280 \\ & 240 \end{aligned}$	-
45	$\begin{gathered} \text { Dưới } 100 \\ \text {-nt- } \\ \text {-nt- } \end{gathered}$	$\begin{aligned} & 170-220 \\ & 190-240 \\ & 240-285 \end{aligned}$	$\begin{aligned} & 600 \\ & 750 \\ & 850 \end{aligned}$	$\begin{aligned} & 360 \\ & 450 \\ & 580 \end{aligned}$	Thường hóa Tbi cải thiện Tơi cải thiện
40X	Dưới 60 $60-100$	$\begin{aligned} & 260-280 \\ & 230-260 \end{aligned}$	$\begin{gathered} 1000 \\ 750 \end{gathered}$	$\begin{aligned} & 800 \\ & 520 \end{aligned}$	T6i cải thiện
40XH	$\begin{aligned} & \text { Dưới } 100 \\ & 100-300 \end{aligned}$	$\begin{aligned} & 250-280 \\ & 230-260 \end{aligned}$	$\begin{aligned} & 850 \\ & 800 \end{aligned}$	$\begin{aligned} & 600 \\ & 580 \end{aligned}$	Toì cải thiện
35XГ CA	$\begin{aligned} & \text { Dưới } 30 \\ & 30-60 \end{aligned}$	$\begin{gathered} 310 \\ 270-310 \end{gathered}$	$\begin{aligned} & 1700 \\ & 1000 \\ & \hline \end{aligned}$	$\begin{gathered} 1350 \\ 900 \\ \hline \end{gathered}$	Tbi cải thiện
20X	Dưới 60	200 **)	650	400	Thấm than, tôi
12XH3A	$\begin{gathered} \text { Dưới } 40 \\ 40-80 \end{gathered}$	$\begin{aligned} & 300\left(^{*}\right) \\ & 250\left(^{*}\right) \end{aligned}$	$\begin{gathered} 1000 \\ 920 \end{gathered}$	$\begin{aligned} & 800 \\ & 700 \end{aligned}$	Thấm than, tôi Thám than, tôi
18XГT	$\begin{gathered} \text { Dưới } 40 \\ 40-80 \end{gathered}$	$\begin{aligned} & 300\left(^{*}\right) \\ & 270\left(^{*}\right) \end{aligned}$	$\begin{gathered} 1000 \\ 950 \\ \hline \end{gathered}$	$\begin{aligned} & 800 \\ & 750 \end{aligned}$	Thấm than, tơi

Chú thích. Trị só co da̛u (*) chl đọ rán trong lơi ; đọ rán bế mạ̣t của các mác thép này đạt được $56 \div 63$ sau khi thám than, tôi và ram tháp.

15.3. TÍNH DQ̂ BỀN CỦA TRUC

15.3.1. Các bước thiết ké trục

Đơi với trục, độ bến thường là chì tiếu quan trọng nhất vế khả năng làm việc. Do đó trục thường được thiết kê theo điệu kiẹn độ bến. Ngoài ra tùy trương hợp cụ thê, còn phải xét đến độ cứng và dao động của trục.

Ững suất trong trục chủ yếu do các lực tác dụng vào các tiết máy truyên động lấp trễn trục gây nên. Công thực xác định lực tác dụng lên trục đâ trỉnh bày trong các chương vê tiết máy truyên động. Các lực này gây nên uôn, xoán, kéo hoạ̣c nén. Trong những trường hợp khác, thí dụ như trục còn chịu tác dụng của lực cât gọt (trục chính của máy tiện v.v...), chịu lực kéo của cáp (trục tang, trục puli) v.v..., cách tính các lực này được trình bày trong các giáo trình chuyên môn ("Nguyên lý cắt kim loai", "Cần trục" v.v...). Ngoài ra, còn có trọng lượng bản thân trục và mômen ma sát trong ở trục tác dụng lên trục, nhựng nhiếu khi bỏ qua không tính đến vì trị số của chúng khá nhỏ.

Có thể tiến hành thiết kê trục theo các bước : tính so bộ đường kinh trục ; định kết cấu và các kích thước trục ; kiểm nghiệm trục. Trước hết phải sơ bộ định đường kính trục theo kinh nghiệm hoạ̣c theo mômen xoán. Tiếp theo là định kết cấu trục ; đường kính và chiêu dải các đọ̣n trục v.v... vị trí các điểm đật lực trên trục và lạp so đó tính toán trục. Sau đó tiến hành kiếm nghiệm độ bến của trục theo hệ só an toàn. Né́u khi làm việc trục đôi khi bị quá tải đột ngột, cả̛n kiểm nghiệm độ bên của trục khi bị quá tải. Trường hợp cần thiết phải kiêm nghiệm trục vê độ cứng và dao động.

15.3.2. Tính so bộ dường kính trục

Dể tinh so bộ đường kinh trục, co thé dùng các công thức kinh nghiệm. Thí dụ đường kinh đầu trục vào của hộp giảm tớc được lấy bằng $0,8 \div 1,2$ đường kính trục động cơ điện. Dường kinh trục bị dẫn của mới cạ̛p trong hộp giảm tớc được lấy bà̀ng $0,3 \div 0,35$ khoảng cách giữa hai trục. Khi không có công thức kinh nghiệm thích hợp, đường kính trục dược định so bộ theo mômen xoán. Sơ dỉ tính theo mômen xoán vì lúc này chiêu dài trục chưa được xác định, do đơ chưa tilm được mómen uón.

Dưới tác dụng của mômen xoân $T=\frac{9,55 \cdot 10^{6} \mathcal{R}}{n} \mathrm{~N} . \mathrm{mm}$, trong trục sinh ra ựng suất xoắn

$$
\tau=\frac{T}{W_{o}} \approx \frac{T}{0,2 d^{3}}
$$

trong đó W_{o} - mômen cản xoấn của trục, mm^{3}
d - đường kính trục, mm.
Theo điếu kiện

$$
\tau=\frac{\mathrm{T}}{0,2 \mathrm{~d}^{3}} \leqslant[\tau], \mathrm{MPa}
$$

tính được đường kính trục

$$
\begin{equation*}
\mathrm{d} \geqslant \sqrt[3]{\frac{\mathrm{T}}{0,2[\tau]}}=\sqrt[3]{\frac{9,55 \cdot 10^{6} \mathcal{R}}{0,2[\tau] \mathrm{n}}} \mathrm{~mm} \tag{15-1}
\end{equation*}
$$

trong đơ \mathcal{R} - cờng suất truyên qua trục, kW ; $[\tau]$ - ûng suât xoán cho phép ; n - so vòng quay trong 1 phút của trục, $\mathrm{vg} / \mathrm{ph}$.

Từ công thự (15.1) ta có

$$
\begin{equation*}
\mathrm{d} \geqslant \mathrm{C} \sqrt[3]{\frac{R}{\mathrm{n}}} \mathrm{~mm} \tag{15-2}
\end{equation*}
$$

với C - hẹ sớ tính toán, phụ thuộc [τ]

$$
C=\sqrt[3]{\frac{9,55 \cdot 10^{6}}{0,2[\tau]}}
$$

Vi khi tính đường kính trục không xêt đên ựng suất uốn, cho nên đê bù lậ, phải lầy [τ] thậ xuông khá nhiếu. Để định đường kînh đấu trực vào hợp giảm tớc, vật liệu làm trục là thép $35,40,45$ hoạc CT , có thê lắy $[\tau] \approx 20 \div 30 \mathrm{MPa}$ hoạc $\mathrm{C} \simeq 130 \div 120$.

Khi tính đường kính tại tiết diẹn nguy hiêm của trục trong hộp giám tơc, có thê lấ $[\tau] \simeq 12 \div 15 \mathrm{~N} / \mathrm{mm}^{2}$ hoạ̣c $\mathrm{C} \simeq 160 \div 150$. Dơi với các trục truyên chung có thé lấy $\mathrm{C}=130 \div 110$.

15.3.3. Dịnh kết cấu trục và so dô tính toán trục

- Sau khi tim được sơ bộ đường kinh trục, tién hành định kết cấu và các kích thước của trục, có xét đến các vấn đê lấp, tháo, cơ định và định vị các tiét máy trên trục v.v...
- Định vị trí ơ trục và các điểm đật lực. Trên thực tế lực phan bố trên chiếu dài mayơ, ớ, nhưng để đơn giản ta coi như lực tập trung. Khi trục láp trên ố trượ, nếu chiêu dải ơ không lớn lám phản lực được coi như đặt ở giữa δ, nếu chiếu dài δ lớn và ở không tự lựa thỉ phản lực coì như đạ̣t cách mút trong của δ khoảng $1 / 3-1 / 4$ chiêu dài δ. Lực tác dụng lền bánh rång đặt tại tâm ăn khớp và coi như tập trung tại điểm giữa chiếu rộng bánh răng. Vi dụ truờng họp trục ra của hộp giảm tốc như hinh 15.1, trục chịu lực vòng F_{i}, lực dọc trục F_{a}, lực hướng tâm F_{r} và mộmen xoấn T qua khớp nới. Ngoài ra trục còn chịu tải trọng phụ F_{k} do sự phân bơ không đếu các lực tác dụng lên các phần tử của khớp nới. Trong tính toán trục có thé lấy gần đưng $\mathrm{F}_{\mathrm{k}} \approx(0,2$ $\div 0,5) \mathrm{F}_{\mathrm{t}} ; \mathrm{F}_{\mathrm{t}}$ - lực vòng trong khớp nơi. Dới với các hộp giảm tớc tiêu chuẩn co thề lăy trị só lực khớp nới $\mathrm{F}_{\mathrm{k}} \approx(4 \div 6) \sqrt{\mathrm{T}} ; \mathrm{F}_{\mathrm{k}}$ tính bằng $\mathrm{N}, \mathrm{mơmen}$ xoăn T - N.mm. Phương chiếu lục F_{k} được chọn ưng với trường hợp bất lợi nhất : lăm tăng ựng suất uơn do các lực khác gây nên đới với trục.
- Phân tích lực tác dụng lên trục, tính phản lực và vễ biểu đồ mơmen uớn. Nếu lựe nà̀m trong các mặt phả̉ng khác nhau thì phân tích chúng ra các thành phần nàm trong mặt phảng dứng và mặt phảng ngang, và tính các phản lực trong các mặt phảng này. Vẽ các biểu đô mômen uón trong mặt phả̉ng đứng, mạt phảng ngang và biễu đồ mômen xoán.

Trên hỉnh 15.6 trình bày so đô các lực tác dụng lên trục (trục 2 trong hình 15.1) và các biếu đơ mômen. Các lực F_{1} và F_{k} tác dụng trong mật phảng ngang ;

Hinh 15.6 các lực F_{a} và F_{r} tác dụng trong mạt phảng đứng. Các mômen tác dựng lên trục : $T=0,5 F_{1} \cdot d_{1}$ và $M_{a}=0,5 F_{a} \cdot d_{1} ; d_{1}$ - đường kính vòng chia của bánh răng. Theo các biễu đô trên hỉnh 15.6 c và d cớ thê tìm được mômen uớn tởng tại bất kỳ tiết diện nào cùa trục. Vî dụ tại tiết diẹn I-I trị sớ mômen uốn

$$
M=\sqrt{\left(F_{r} \cdot \frac{a b}{l}+M_{a} \cdot \frac{a}{l}\right)^{2}+\left(F_{1} \cdot \frac{a b}{l}+F_{k} \cdot \frac{c a}{l}\right)^{2}}
$$

15.3.4. Kiêm nghiệm trục theo hệ só an toàn

Dưới tác dụng của ứng suất uơn và ưng suất xoán trục bị hỏng vì mơi. Do đó phải tiên hành kiểm nghiệm trục vế đọ bên mơi theo hệ so an toàn. Ứng suất uơn trong trục thay đới theo chu trình đơi xựng. Ứng suât xoán được coi là thay aới theo chu trỉnh mạch động đới với các trục quay một chiêu và chu trình đ夭i xứng nếu trục quay 2 chiếu.

Tién hành kiểm nghiệm hệ so an toàn của trục tại một so tiêt diện nguy hiểm (tiét diệ có trị sơ mômen uơn và mômen xoấn lơn, có tập trung ứng suất lơn hoậc có đường kính tương đơi nhỏ nhưng chịu mômen tương đơi lớn v. v...).

Tại các tiết diện trục chịu ứng suất uơn và ựng suất xoản hẹ sớ an toàn s phải thỏa mãn điếu kiện :

$$
\begin{equation*}
s=\frac{s_{\sigma} \cdot s_{\tau}}{\sqrt{s_{\sigma}^{2}+s_{\tau}^{2}}} \geqslant[\mathrm{~s}] \tag{15-3}
\end{equation*}
$$

trong đơ $[\mathrm{s}]=1,5 \div 2-\mathrm{hẹ} \mathrm{~s}$ ơ an toản phải đạt được; khi cân tång độ cứng lấy $[\mathrm{s}]=2,5 \div 3$ và như vậy có thê không cần tính dộ cứng của trục ;
$s_{\sigma}-$ hệ $s \delta$ an toàn chil xét riêng ứng suât uón

$$
\begin{equation*}
\mathrm{s}_{\sigma}=\frac{\sigma_{-1}}{\frac{\mathrm{k}_{\sigma}}{\beta \cdot \varepsilon_{\sigma}} \cdot \sigma_{\mathrm{a}}+\psi_{\sigma} \cdot \sigma_{\mathrm{m}}} \tag{15-4}
\end{equation*}
$$

s_{T} - hệ só an toàn chil xét riêng ứng suât xoân

$$
\begin{equation*}
\mathrm{s}_{\tau}=\frac{\tau_{-1}}{\frac{\mathbf{k}_{\tau}}{\beta \cdot \varepsilon_{\tau}} \cdot \tau_{\mathrm{a}}+\psi_{\tau} \cdot \tau_{\mathrm{m}}} \tag{15-5}
\end{equation*}
$$

Trong các công thức trên :
σ_{-1} và $\tau_{-1}-$ giới hạn mỏi uơn và mỏi xoán trong chu trình đđ̛i xứng của mẫu nhẳn đương kính $7 \div 10 \mathrm{~mm}$; có thê tra trong các tải liệu hoạc lấy gần đưng theo các công thức

$$
\begin{aligned}
& \sigma_{-1} \approx(0,40 \div 0,45) \sigma_{b} \\
& \tau_{-1} \approx(0,23 \div 0,28) \sigma_{b}
\end{aligned}
$$

σ_{a} và τ_{a} - biên đọ ựng suaft uớn và ứng suát xoấn trong tiét diện trục ; σ_{m} và τ_{m} - ứng suất uơn và ứng suất xoấn trung binh.

Ửng suất uớn được coi như thay đới theo chu trình đơi xứng (bỏ qua ứng suất kéo hoạc nén do lực dọe trục gây nên), do đó

$$
\begin{equation*}
\sigma_{m}=0 ; \sigma_{a}=\sigma_{\max }=\frac{M}{W} \tag{15-6}
\end{equation*}
$$

Ửng suắt xoán được coi như thay đơi theo chu trình mạch động (khi trục quay 1 chiéu)

$$
\begin{equation*}
\tau_{\mathrm{m}}=\tau_{\mathrm{a}}=0,5 \tau_{\max }=\frac{0,5 \mathrm{~T}}{\mathrm{~W}_{\mathrm{o}}} \tag{15-7}
\end{equation*}
$$

W và W_{o} - mốmen cản uớn và cản xoắn của tiết diện trục ; đới với tiêt diẹn tròn dường kính d

$$
\mathrm{W}=\frac{\pi \mathrm{d}^{3}}{32} \text { và } \mathrm{W}_{\mathrm{o}}=\frac{\pi \mathrm{d}^{3}}{16}
$$

Đơi với trục tiét diện tròn cơ rânh then,

$$
W=\frac{\pi d^{3}}{32}-\frac{b t_{1}\left(d-t_{1}\right)^{2}}{2 d} \quad W_{o}=\frac{\pi d^{3}}{16}-\frac{b t_{1}\left(d-t_{1}\right)^{2}}{2 d}
$$

t_{1} - chiếu sậu rănh then ; b-chiêuu rộng then.
Đói với trục rỗng, đường kính trong d ', đường kính ngoài d

$$
\mathrm{W}=\frac{\pi\left(1-\gamma^{4}\right) \mathrm{d}^{3}}{32} \quad \mathrm{~W}_{\mathrm{o}}=\frac{\pi\left(1-\gamma^{4}\right) \mathrm{d}^{3}}{16}
$$

với $\gamma=\mathrm{d}^{\prime} / \mathrm{d}$
ψ_{σ} và ψ_{τ} - hệ số xét đến ánh hường của ứng suất trung bình đến độ bên mỏi ; có thé̉ láy $\psi_{\sigma} \approx 0,10$ và $\psi_{\tau} \approx 0,05$ đói với thép các bon ; $\psi_{\sigma} \approx 0,15$ và $\psi_{\tau} \approx 0,10$ đói với thép hợp kim.
ε_{σ} và ε_{T} - hệ số xét đên ảnh hường của kich thược tiết diẹn trục đến đọ bên mỏi, có thê tính theo công thức (1-15) hoạ̣ (1-16), hoạ̣c tra bảng 15.2 (đơi với các trục bà̀ng thép).

Bảng 15.2
Héso kich thutc $\varepsilon_{\sigma}, \varepsilon_{\tau}$

Hẹ s δ kich thước	Đương kính truc, mm								
	15	20	30	40	50	70	100	200	
ε_{σ}	0,95	0,92	0,88	0,85	0,81	0,76	0,70	0,61	
ε_{τ}	0,87	0,83	0,77	0,73	0,70	0,65	0,59	0,52	

\mathbf{k}_{σ} và \mathbf{k}_{τ} - hệ so tập trung ứng suắt thực tế khi uớn và khi xoán (bảng 15.3 , ký hiẹu các kích thước xem hình 15.7)

Hình 15.7

He so tap trung ung suat thuc te $k_{\sigma}, \boldsymbol{k}_{\boldsymbol{r}}$

Chờ tập trung úng suát	k_{σ}		k $\boldsymbol{\tau}$	
	khi σ_{b} MPa			
	< 700	>1000	< 700	$\geqslant 1000$
$\begin{gathered} \text { G6c } \operatorname{Ltn}(\mathrm{D} / \mathrm{d}=1 / 2 \div 2): \\ r / d=0,02 \\ r / d=0,06 \\ r / d=0,10 \end{gathered}$	$\begin{aligned} & 2,50 \\ & 185 \\ & 1,60 \end{aligned}$	$\begin{aligned} & 3,50 \\ & 2,00 \\ & 1,64 \end{aligned}$	1,80 140 125	210 453 1,35
Lỡ ngang : $d_{0} / \mathrm{d}=0,05 \div 0,025$	190	2,00	1,75	2,00
Ränh vòng ($t=\{$) : $\begin{aligned} & \mathrm{r} / \mathrm{d}=0,02 \\ & \mathrm{r} / \mathrm{d}=0,06 \\ & \mathrm{r} / \mathrm{d}=0,10 \end{aligned}$	$\begin{aligned} & 190 \\ & 180 \\ & 1,70 \end{aligned}$	$\begin{aligned} & 2,35 \\ & 2,00 \\ & 1,85 \end{aligned}$	$\begin{array}{r} 1,40 \\ 1,35 \\ 1,25 \end{array}$	170 1,65 1,50
Ränh then	175	2,00	1,50	190
Ren truc vit	2,30	2,50	1,70	t,90

Nếu tại tiết diện trục vừa có tập trung ứng suát do hinh dạng kết cấu trục vừa do bê mặt khơng nhăn (so vơi bê mặt dược mài), hệ só tập trung ứng suá̛t tỡng họp
 ứng suât do bê mặt không nhån gây nên, tra bảng 15.4. Trường hơp trục được tăng bên bế mặt thì không xét đến $\mathbf{k}_{\sigma}^{\prime}$ và $\mathbf{k}_{\tau}^{\prime}$ nghla là lây $\mathbf{k}_{\sigma}^{\prime}=\mathbf{k}_{\tau}^{\prime}=1$.

Bảng 15.4
Hẹ sơ tạp trung úng suât $k_{g}^{\prime}, k_{x}^{\prime}$ do bè mật không nhân

Cách gia công và đọ nhám bế mặt				
	500	700	900	1200
Mà (cáp $^{9} 9,10$) $\mathrm{R}_{\mathrm{a}} 0,32 \div 0,16$	1	1	1	1
Tiện (câp 6, 7, 8) $\mathrm{R}_{\mathrm{a}} 2,5 \div 0,63$	1,05	1,1	1,15	1,25
Cạo (cáp 3, 4, 5) $\mathrm{R}_{\mathrm{z}} 80 \div 20$	1,20	1,25	1,35	1,50
Bé mặt không gia công	1,35	1,50	1,70	2,20

Người ta cũng bơ qua không xét đến các hẹ so $\mathrm{k}_{\boldsymbol{\sigma}}^{\prime}$ và k_{τ} đớ i với các bé mạ̣t láp ghép với bánh đai, bánh răng v. v... Tẏ $s \sigma^{\prime} k_{\sigma} / \varepsilon_{\sigma}$ và $k_{\tau} / \varepsilon_{\tau}$ đơi với các chố láp ghép trục với các tiết máy trên trục, cho trong bảng 15.5 , phụ thuộc kiếu lấp, đường kính và giới hạn bến của trục.

Bâng 15.5
Các trị só $k_{\sigma} / \varepsilon_{\sigma}$ và $k_{\tau} / \varepsilon_{\tau}$ của truc tại chô lâp ghép

Đường kính trục d,mm	Kiểu láp	$\operatorname{Trị~s~} \delta \mathrm{k}_{\sigma} / \varepsilon_{\delta}$ khi co σ_{b}, MPa				Trị só $\mathrm{k}_{\boldsymbol{\gamma}} / \varepsilon_{\tau}$ khi có σ_{b}, MPa			
		500	700	900	1200	500	700	900	1200
30	H7/r6	2,5	3,0	3,5	4,25	1,9	2,2	2,5	3,0
	H7/k6	1,9	2,25	2,6	3,2	1,55	1,55	2,0	2,3
	H7/h6	1,6	1,95	2,3	2,75	1,4	1,4	1,8	2,1
50	H7/r6	3,05	3,65	4,3	5,2	2,25	2,6	3,1	3,6
	H7/k6	2,3	2,75	3,2	3,9	1,9	2,15	2,5	2,8
	H7/h6	2,0	2,4	2,8	3,4	1,6	1,85	2,1	2,4
100	H7/r6	3,3	3,95	4,6	5,6	2,4	2,8	3,2	3,8
	H7/k6	2,45	2,95	3,45	4,2	1,9	2,2	2,5	2,9
	H7/h6	2,15	2,55	3,0	3,6	1,7	1,95	2,2	2,6

β - hệ sơ tăng bên bê mặt trục : (bảng 15.6). Nếu không dùng các phương pháp tăng bên bê mật trục thỉ $\beta=1$.

Hẹ só tăng bên bề mặt truc c β

Phương pháp tăng bển bé mặt trục	$\begin{gathered} \text { Giới hạn bến } \\ \text { trong lơi } \sigma_{b^{\prime}} \\ \text { MPa } \end{gathered}$	Hệ só tăng bến bê mật β		
		Trục nhån	Trục có tập trung ưng suât	
			$\mathrm{k}_{\alpha} \leqslant 1,5$	$\mathrm{k}_{\sigma}=1,8 \div 2$
Tôi bàng dòng điện	600-800	1,5-1,7	1,6-1,7	2,4-2,8
tần số cao	800-1000	1,3-1,5	-	-
Thâm nito	900-1200	1,1-1,2	1,5-1,7	1,7-2,1
Phun bi	600-1500	1,1-1,2	1,5-1,6	1,7-2,1
Laxn nén	-	1,1-1,3	1,3-1,5	1,8-2,0

Nếu hệ số an toàn s của trục nhỏ hơn [s] thì phải tăng đường kính trục hoạ̣c chọn vật liệu cơ độ bên cao hơn (so với vật liệu đã chọn) để làm trục. Ngược lại nếu hệ só an toàn s quá lớn so với $[\mathrm{s}]$, nghia là trục lảm việc quá thừa an toàn, củng cần giảm bớt đường kính trục hoặc chọn vật liệu có độ bến thấp hơn.

15.3.5. Kiểm nghiệm trục về độ bền quá tải

Khi bị quá tảai đột ngột (ví dụ khi mở máy) trục cơ thê bị biên dạng dư quá lớn hoạc gāy. Để trục cơ thê làm việc bỉnh thường phải thỏa mãn điếu kiện

$$
\begin{equation*}
\sigma_{\mathrm{td}}=\sqrt{\sigma_{\mathrm{u}}^{2}+3 \tau^{2}} \leqslant[\sigma]_{\mathrm{qt}} \tag{15-8}
\end{equation*}
$$

trong dó :

$$
\begin{aligned}
\sigma_{\mathrm{u}} & =\frac{\mathrm{M}_{\mathrm{qt}}}{0,1 \mathrm{~d}^{3}} \\
\tau & \approx \frac{\mathrm{~T}_{\mathrm{q} 1}}{0,2 \mathrm{~d}^{3}}
\end{aligned}
$$

$[\sigma]_{\mathrm{q} 1} \simeq 0,8 \sigma_{\mathrm{ch}}$ - ûng suất quá tải cho phép; M_{qt} và T_{qt} - mômen uốn và mômen xoán quâ tải tại tiết diện nguy hiêm.

15.4. TíNH DỘ CỨNG CỦA TRUC

15.4.1. Tính toán độ cứng uốn

Nễu không đủ độ cứng uôn, trục bị biến dạng uốn lớn sê ảnh hưởng đến sự làm việc bỉnh thường của trục và của các tiết máy lắp trên trục. Dộ vông y của trục động cơ điện quá lớn sē lảm thay đởi khe hở giữa rôto và stato, do đó phá hoại khả năng làm việc của động cơ điện. Góc xoay θ của trục tại chớ ô trục quá lớn làm ngõng trục và ờ trục mòn không đếu sinh nhiệt nhiếu. Đối với trục lấp bánh răng, nếu không đủ
cứng, bánh răng bị lệch ăn khớp khồng đêu trên chiêu dài răng, gây nên tập trung tải trọng lón.

Vil vạy, khi thiêt ké trục cân hạn ché biến dạng của trục. Trị só bién dạng uơn cho phép được định theo điêu kiện làm việc cụ thể của trục. Dọ vững cho phép [y] của các trục nơi chung trong chê tạo máy không quá $0,0002 \div 0,0003$ khoảng cách giữa haị gơi tựa, độ vơng của trục chơ láp bánh râng không quá $(0,01 \div 0,03) \mathrm{m}$, (m - mơưn bánh răng). Gớ xoay tưong đơi giữa các trục tại chớ láp bánh răng phải dưới $0,001 \mathrm{rad}$. Gớc xoay của trục ch δ láp $\overline{6}$ trượt không được quá $0,001 \mathrm{rad}$, ch δ

Ngoài ra, độ cứng uơn của trục cūng co ảnh hưởng lớn đến sự dao động của trục.
Độ vōng và góc xoay của trục được tính theo các phương pháp của Sức bến vật liẹu. Dới với những trường hộp đơn giản, ta coi trục như 1 dầm có tiết diện không đới và dùng các cơng thức ghi trong bảng 15.7 (ký hiệu trong bàng : E - mỗun đàn hồi, J - mômen quán tính).

Bảng 15.7
Công thû́c tinh góc xoay q và dọ vơng y của truc có hai goí tưa

Góc xoay θ và độ vơng y	$A+d \rightarrow\|D A\|^{F} a+C+B \quad C$	
$\theta_{\text {A }}$	$\frac{\mathrm{Fab}(1+\mathrm{b})}{6 \mathrm{EJ} l}$	$-\frac{\mathrm{F}_{1} \mathrm{c} l}{6 \mathrm{EJ}}$
$\theta_{\text {B }}$	$-\frac{\mathrm{Fab}(l+\mathrm{a})}{6 \mathrm{E} J l}$	$\frac{\mathrm{F}_{1} \mathrm{c} l}{3 \mathrm{EJJ}}$
θ_{c}	θ_{B}	$\frac{\mathrm{F}_{1} \mathrm{c}(2 l+3 \mathrm{c})}{6 \mathrm{EJ} J}$
$\theta_{\text {D }}$	$\frac{\mathrm{Fb}\left(l^{2}-\mathrm{b}^{2}-3 \mathrm{a}^{2}\right)}{6 \mathrm{EJ} l}$	$\frac{\mathrm{F}_{1} \mathrm{c}\left(3 \mathrm{~d}^{2}-l^{2}\right)}{6 \mathrm{EJJ} l}$
θ_{G}	$\frac{\mathrm{Fa}\left(l^{2}-\mathrm{a}^{2}-3 \mathrm{e}^{2}\right)}{6 \mathrm{E} \mathrm{~J} l}$	-
θ_{H}	$\frac{\mathrm{Fab}(\mathrm{~b}-\mathrm{a})}{3 \mathrm{E} J l}$	-
y_{D}	$\frac{\operatorname{Fbd}\left(l^{2}-\mathrm{b}^{2}-\mathrm{d}^{2}\right)}{6 \mathrm{EJ} l}$	$\frac{\mathrm{F}_{1} \mathrm{~cd}\left(l^{2}-\mathrm{d}^{2}\right)}{6 \mathrm{E} J l}$
y_{G}	$\frac{\operatorname{Fae}\left(l^{2}-\mathrm{a}^{2}-\mathrm{e}^{2}\right)}{6 \mathrm{EJ} l}$	-
y_{H}	$\frac{\mathrm{Fa}^{2} \mathrm{~b}^{2}}{3 \mathrm{EJ} l}$	-
y_{C}	$\theta_{\mathrm{B}} \mathrm{c}$	$\frac{\mathrm{F}_{1} \mathrm{c}^{2}(l+\mathrm{c})}{3 \mathrm{EJ}}$

Dơi với những trục bậc hoạ̣c trục chịu lực phức tạp, ta tính độ võng và góc xoay của trục theo phương pháp tích phân Moro.
15.4.2. Tính toán dệ cứng xoân

Biến dạng xoấn của trục trong các cơ cấu truyên động ảnh hưởng đến độ chính xác, làm việc cưa máy (máy cát ren, máy cất răng, máy chia độ v.v...). Trục bánh răng khong đủ độ cựng xoân sê làm tăng tập trung tải trọng trên chiêu dài rảng.

Trong một số máy, nếu trục không đủ độ cứng xoăn, sế sinh ra dao động xoán rất nguy hiểm (thí dụ như cơ cấu truyễn động từ pittông của dộng co đớt trong, nếu khơng tính toán đúng vế đọ cứng xoân, có thể xảy ra cộng hương, gây tác hại nghiêm trọng).

Góc xoân φ của trục trơn, tiết diẹn tròn, đự̛̣c tính theo công thức của Sức bến vật liệu, phải thỏa mằn điếu kiện

$$
\varphi=\frac{\mathrm{Tl}}{\mathrm{GJ}_{\mathrm{o}}} \leqslant[\varphi] \mathrm{rad}
$$

hoạac

$$
\varphi=\frac{57 \mathrm{Tl}}{\mathrm{GJ}_{\mathrm{o}}} \leqslant[\varphi] \text { đọ }
$$

trong đó G - mỗun đản hôi trự̛̣, MPa , đới vối trục thép $\mathrm{G}=8.10^{4} \mathrm{MPa}$; J_{o} - mômen quán tính độc cực của tiết diện trục, mm^{4}, đơi vói trục đạc dường kînh $\mathrm{d}, \mathrm{J}_{\mathrm{o}}=0,1 \mathrm{~d}^{4} ; \mathrm{T}-$ mômen xoắn, N.mm ; l - chiếu dài đoạn trục đang xét, mm.

Dơi vơi trục chính của máy cát kim loại cỡ lớn, góc xoán cho phép $[\varphi]$ không được quá 5^{\prime} trến chiêu dài 1 mét ; đới với trục cơ cấu di chuyển cầu lăn $[\varphi]=15^{\prime} \div 20^{\prime}$ trên chiếu dài 1 mét; đơi vơi hộp giảm tớc có thế lắy $[\varphi]=30^{\prime}$ trên chiếu dài 1 m .

Tuy nhiên đới vơi phần lớn các máy, độ cững xoán không giữ vai trò quan trọng, do đó khơng cấn kiểm nghiẹm.

15.5. TÍNH TOÁN DAO ĐỘNG CỦA TRUC

Nêu tần so dao động của tải trọng tác dụng lên trục bằng hoặc gần bàng tân só dao động riêng của trục hoạc của hệ thơng trục thì biên độ dao động của trục và tiét máy lắp trên trục sẽ tăng lên, dān đến hiện tự̛ng cộng hưởng. Dao động mạnh có thể làm hỏng trục hoạc các tiết máy láp trên trục. Vì vây, đơi vái những trục chịu tải trọng thay đởi với tấn sơ cao cấn tính toán kiểm nghiệm vê dao động cưa trục.

Trục có thể bị dao động dọc, dao động ngang và dao động xoân. Trong thực tế thường chú ý đến dao dộng ngang và dao động xoân vì tấn sơ riêng của dao động ngang và tâ̂n sơ riêng của dao động xoấn của trục tương đới thấp.

Đđ̛i với phần lớn các trục quay nhanh, lực kích thích chủ yéu là lực sinh ra do sự thiếu cân bàng của tiết máy quay. Tẫn sơ tác dụng của lực này bằng tần sơ quay của trục. Khi tẩn sơ quay của trục bằng hoạc là bọi của tấn sơ riêng của dao dộng ngang của trục thỉ xảy ra cộng hường. Vận tơc của trục khi xây ra cộng hưởng được gọi là vận tớc tới hạn.

Để tránh xảy ra cộng hưởng, thường cho trục làm việc thấp hơn hoặc cao hơn vận tớc tới hạn.

Tính toán dao động của trục là vân đê khá phức tạp. Trong phạm vi giáo trình này chỉ trinh bảy một trương hợp tính toán đơn giản vê dao động ngang của trục, do lực ly tâm gây nên.

Giả sử có một trục, trên đơ lá́p đia có khơi lự̛̣ng m , đặt ỏ khoảng giû̃a hai ố trục (hỉnh 15.8). Gọi e là khoàng cách từ trọng tâm của đỉa đến trục quay. Bó qua không xét đến ảnh hưởng của khới lượng bản thån trục.

Khi trục quay đếu với vận tớc gớc ω, dưới tác dụng của lực ly tâm Q, trục bị võng đi mọt khoang y.

Lực ly tâm Q dược tinh theo công thức

$$
\begin{equation*}
\mathrm{Q}=\mathrm{m} \omega^{2}(\mathrm{y}+\mathrm{e}) \tag{15-9}
\end{equation*}
$$

Coi trục như một dầm đạ̣t trên hai gỡi tựa tự do :

$$
\begin{equation*}
\mathrm{y}=\frac{\mathrm{Q} l^{3}}{48 \mathrm{EJ}} \tag{15-10}
\end{equation*}
$$

'trong đó l - khoảng cách giữa hai δ trục ;
J - mômen quén tính của tiét diẹn trục.

Hinh 15.8

Từ (15-10) co thé viét

$$
Q=\frac{48 \mathrm{E} J}{1^{3}} y=C y
$$

Với C - lực gây nên độ vơng bà̀ng mồt đơn vị.
Do đó ta có

$$
\begin{equation*}
m(y+e) \omega^{2}=C y \tag{15-11}
\end{equation*}
$$

hoạac

$$
\begin{equation*}
y=\frac{e}{\frac{C}{m \omega^{2}}-1} \tag{15-12}
\end{equation*}
$$

Qua công thự (15-12) ta thây khi vận tớc gơc ω của trục tăng lên dộ vōng y tăng lên. Khi $\omega=\sqrt{\frac{C}{m}}$ thì $y \rightarrow \infty$, nghia là ở vận tớc này trục sẽ bị phá hỏng. Vạn tốc góc $\omega=\sqrt{\frac{\mathrm{C}}{\mathrm{m}}}$ là vận tớc gớc tới hạn của trục, ký hiệu là $\omega_{\text {th }}$

$$
\begin{equation*}
\omega_{\mathrm{th}}=\sqrt{\frac{C}{\mathrm{~m}}} \tag{15-13}
\end{equation*}
$$

Só vòng quay tơi hạn của trục trong 1 phút $n_{\text {th }}$ được tính theo công thức

$$
\begin{equation*}
n_{t h}=\frac{60}{2 \pi} \omega_{t h}=\frac{30}{\pi} \sqrt{\frac{C}{m}} \tag{15-14}
\end{equation*}
$$

Gọi $y_{t}=\frac{G}{C}$ là độ vông tīnh do trọng lự̆ng $G=m g$ gây nên (g - gia tóc trọng trường), ta có thể viết

$$
\mathrm{C}=\frac{\mathrm{G}}{\mathrm{y}_{\mathrm{t}}}=\frac{\mathrm{mg}}{\mathrm{y}_{\mathrm{t}}}
$$

Thay giá trị cùa C vào ($15-14$)

$$
\begin{equation*}
n_{t h}=\frac{30}{\pi} \sqrt{\frac{g}{y_{t}}} \tag{15-15}
\end{equation*}
$$

Vì gia tớc trọng trường $\mathrm{g} \simeq 9810 \mathrm{~mm} / \mathrm{s}^{2}$ và nếu độ vỡng tỉnh y , tính bằng mm , công thức tinh số vòng quay tới hạn của trục có dạng

$$
\begin{equation*}
\mathrm{n}_{\mathrm{th}} \simeq 950 \sqrt{\frac{1}{y_{1}}} \mathrm{vg} / \mathrm{ph} \tag{15-16}
\end{equation*}
$$

Theo tinh toán trên, khi $\omega=\omega_{\text {th }}$ thì dọ vỡng y $\rightarrow \infty$, trục sẽ bị gảy, nhưng thực ra do có những lực giàm dao đọng (lục giảm chấn) như lực ma sát trong, lực cản của mơi trường xung quanh $\mathbf{v} . \mathrm{v}$... cho nên trục không bị hòng ngay tức khác. Vì vậy có thé tãng tơc đọ rất nhanh cho vạn tớc góc ω của trục vượt quá $\omega_{\text {th }}$ và trục sê làm việc δ n định. Khi $\omega \rightarrow \infty$ thil $y \rightarrow e$, trục không bị vơng nữa.

Có thể dùng các biện pháp sau đây để tránh cộng hưởng :

- Thay đofi kich thươ truyc.
- Thay đới vận tơc của truc.
- Thay dofi mômen quán tinh.
- Láp những thiết bị giàm chấn.

15.6. THí DU

Thiét ké truc ra của hộp giảm tớc bánh răng (hỉnh 15-1), công suất truyên qua trục $\mathcal{R}=13 \mathrm{~kW}$, so vòng quay của trục $\mathrm{n}=200 \mathrm{vg} / \mathrm{ph}$; bánh răng nghiêng có môdun $\mathrm{m}=5$, sơ răng $\mathrm{z}=40$, góc nghiêng $\beta-8^{0}$, chiêu rộng bánh răng 100 mm , trên đầu thò ra của trục có láp nбí trục vòng đàn hơi, vật liệu trục là thếp 45 thường hóa. Nới trục gây thêm tải trọng phụ bàng 0,3 lực vòng tác dụng vào nđii trục. Trục quay mộ chiéu, làm viẹc khơng liên tục.

Giaí

1 - Theo công thức (15-2) tinh so bộ đường kinh trục tại chớ lắp bánh răng

$$
\mathrm{d}=160 \sqrt[3]{\frac{R}{n}}=160 \sqrt[3]{\frac{13}{200}} \approx 64 \mathrm{~mm}
$$

2 - Định kết cá̛u trục và kích thư̂́c các đoạn trục : đường kính tại chơ láp bánh răng $\mathrm{d}_{1}=65 \mathrm{~mm}$; đường kính ch δ lắp © lăn $\mathrm{d}_{\mathrm{o}}=\mathrm{d}_{1}-5=60 \mathrm{~mm}$; đường kính chơ lấp khớp nớ $d_{k}=d_{o}-5=55 \mathrm{~mm}$; các kích thước chiéu dài $l=160 \mathrm{~mm} ; \mathrm{a}=\mathrm{b}=80 \mathrm{~mm}$; $\mathrm{c}=170 \mathrm{~mm}$; đường kính trung binh của vòng tròn qua tám các vòng đàn hối của khớp noi $\mathrm{D}=140 \mathrm{~mm}$.

3 - Xác định các lực qua bánh răng tác dụng lên trục :
Mómen xoán

$$
\mathrm{T}=9,55 \cdot 10^{6} \cdot \frac{13}{200}=620000 \mathrm{~N} \cdot \mathrm{~mm}
$$

Lực vòng

$$
\mathrm{F}_{1}=\frac{2 \mathrm{~T}}{\mathrm{~d}_{\mathrm{br}}}=\frac{2 \mathrm{~T} \cdot \cos \beta}{\mathrm{~m} \cdot \mathrm{Z}}=\frac{2.620000 \cdot 0,9903}{5 \cdot 40}=6140 \mathrm{~N}
$$

$\mathrm{d}_{\mathrm{br}}-$ dường kính vòng lăn của bánh rảng, $\mathrm{d}_{\mathrm{br}}=5.40 / 0,9903=202 \mathrm{~mm}$.
Lục dọc trục

$$
\mathbf{F}_{\mathrm{a}}=\mathrm{F}_{\mathrm{t}} \cdot \operatorname{tg} \beta=6140 \cdot 0,1405=860 \mathrm{~N}
$$

Lực hướng tâm

$$
F_{r}=\frac{F_{t} \cdot \operatorname{tg} \alpha}{\cos \beta}=6140 \cdot \frac{0,364}{0,9903}=2260 \mathrm{~N}
$$

4. Tính tải trọng phụ do khớp nơi gây nên.

$$
F_{k}=0,3 \cdot \frac{2 T}{D}=\frac{0,3 \cdot 2 \cdot 620000}{140}=2660 \mathrm{~N}
$$

5. Tính phản lực ơ các δ ờ và vê biếu đơ mơmen ươn, biếu dơ mômen xoấn (hình 15.6).

Xét các phản lực sinh ra bời các lực F_{r} và F_{a} trong mật phả̉ng đững. Các phản lực A_{1} và B_{1} tại các gơi đō A và B, theo phương F_{r}

$$
F_{r}=A_{1}+B_{1}
$$

Già sử $\delta \mathrm{A}$ chịu lực dọc trục F_{a}, phàn lực dọc trục H_{1} tại 6 A

$$
\mathrm{H}_{1}=\mathrm{F}_{\mathrm{a}}=860 \mathrm{~N}
$$

Lay momen dofi với goji đo A (hỉnh 15.6b)

$$
\begin{aligned}
& \mathrm{B}_{1} 1-\mathrm{F}_{\mathrm{r}} 1 / 2+\mathrm{F}_{\mathrm{a}} \mathrm{~d}_{\mathrm{br}} / 2=0 \\
& \mathrm{~B}_{1}=\mathrm{F}_{\mathrm{r}} / 2-\mathrm{F}_{\mathrm{a}} \mathrm{~d}_{\mathrm{br}} /(21)=2260 / 2-860.202(2.160)=590 \mathrm{~N}
\end{aligned}
$$

Do đó

$$
A_{1}=F_{r}-B_{1}=1670 \mathrm{~N}
$$

Tính các phản lực do F_{1} và F_{k} gây nên trong mặt phẩng năm ngang (xét trường hợp xấu nhât là lực F_{k} cùng vái lực F_{1} làm trục bị ươn nhiêu nhât). Gọi A_{2} và B_{2} là các phản lực tại các ók $^{\mathrm{K}} \mathrm{A}$ và B , trong mặt phả̉ng nàm ngang

$$
\begin{aligned}
& A_{2}+B_{2}=F_{1}-F_{k} \\
& B_{2} 1+F_{k}(c+1)-F_{1} / 2=0 \\
& B_{2}=F_{\mathfrak{l}} / 2-F_{k}(c / l+1)=6140 / 2-2660(170 / 160+1) \\
& B_{2}=-2420 N .
\end{aligned}
$$

Chiêu của lực B_{2} ngự̛̣ vái chiêu ghi trên hình 15.6 b .

$$
A_{2}=F_{1}-F_{k}-B_{2}=6140-2660+2420=5900 \mathrm{~N}
$$

6. Kiếm nghiệm hệ só an toàn vê mỏi của trục theo công thức (15-3). Tiết diện nguy hiểm cưa trục là các tiết diện I-I và II-II (hình 15.6a), chịu tải trọng lớn và có tập trung ứng suất.

Tại tiêt diện I-I lấp bánh răng, truc bị yếu do rãnh then
Mómen uớn toàn phần

$$
M_{u}=\sqrt{\left(A_{1} 1 / 2\right)^{2}+\left(A_{2} 1 / 2\right)^{2}}=491000 \mathrm{~N} \cdot \mathrm{~mm}
$$

Mómen xoán

$$
\mathrm{T}=620000 \mathrm{~N} \cdot \mathrm{~mm}
$$

Ửng suắt uơn

$$
\sigma_{u}=\frac{M_{u}}{W}=\frac{491000}{0,1 \cdot 65^{3}}=17,9 \mathrm{MPa}
$$

Ững suất xuắn

$$
\tau=\frac{T}{\mathrm{~W}_{\mathrm{o}}}=\frac{620000}{0,2 \cdot 65^{3}}=11,3 \mathrm{MPa}
$$

Trục làm bầng thêp 45 thường hớa có giới hạn bến kéo $\sigma_{b}=610 \mathrm{MPa}$,

$$
\begin{aligned}
& \text { giới hạn mỏi uón } \sigma_{-1}=0,42 \sigma_{\mathrm{b}}=256 \mathrm{MPa} \\
& \text { giới hạn mói xoán } \tau_{-1}=0,25 \sigma_{\mathrm{b}}=152 \mathrm{MPa}
\end{aligned}
$$

Hệ so tập trung ưng suất thực té tra theo bảng 15.3 , đơi với rannh then của trục có giới hạn bên $\sigma_{b} \leqslant 700 \mathrm{MPa}$ co $\mathbf{k}_{\sigma}=1,75 ; \mathbf{k}_{\tau}=1,50$. Hẹ só kich thước tra bảng $15.2, \varepsilon_{\sigma}=0,78 ; \varepsilon_{\tau}=0,67$. Trục được mài, do có hệ só tập trung ưng suât do bê mặt không nhǎn $k_{\sigma}^{\prime}=k_{\tau}^{\prime}=1$. Trục không được tăng bên, hệ só $\beta=1$.

Các hệ só $\psi_{\sigma}=0,10$ và $\psi_{\tau}=0,05$ đơi với thép các bon. Theo công thức ($15-4$), với $\sigma_{\mathrm{a}}=\sigma_{\mathrm{u}}=17,9$ và $\sigma_{\mathrm{m}}=0$, ta có

$$
\mathrm{s}_{\sigma}=\frac{256}{\frac{1,75}{0,78} \cdot 17,9}=6,4
$$

Theo cong thức (15-5) với $\tau_{\mathrm{a}}=\tau_{\mathrm{m}}=\tau / 2=5,6 \mathrm{MPa}$, ta co

$$
s_{\tau}=\frac{152}{\frac{1,5}{0,67} \cdot 5,6+0,05 \cdot 5,6}=11,8
$$

Tính hẹ so an toàn s theo công thức (15-3)

$$
s=\frac{6,4 \cdot 11,8}{\sqrt{(6,4)^{2}+(11,8)^{2}}}=5,6>[\mathrm{s}]
$$

Tại tiết diện II-II, kê chỡ lấp 6 , có tập trung ứng suất do góc lự̛̣n.
Momen uón tại đay

$$
\mathrm{M}_{\mathrm{u}} \approx \mathrm{~F}_{\mathrm{k}} \cdot \mathrm{c}=2660.170=452200 \mathrm{~N} \cdot \mathrm{~mm}
$$

Mômen xoán $T \cdot=620000 \mathrm{~N} \cdot \mathrm{~mm}$

$$
\begin{gathered}
\sigma_{\mathrm{a}}=\sigma_{\mathrm{u}}=\frac{452200}{0,1 \cdot 55^{3}}=27,2 \mathrm{MPa} \\
\tau_{\mathrm{a}}=\mathrm{t}_{\mathrm{m}}=\frac{\tau}{2}=\frac{620000}{0,2 \cdot 55^{2} \cdot 2}=9,3 \mathrm{MPa}
\end{gathered}
$$

Lây bán kính góc lượn $\mathrm{r}=3 \mathrm{~mm} ; \mathrm{r} / \mathrm{d}=3 / 55 \approx 0,06$, theo bảng $15.3 \mathrm{k}_{\sigma}=1,80$; $\mathrm{k}_{\tau}=1,35$

$$
\begin{aligned}
& \mathrm{s}_{\sigma}=\frac{256}{\frac{1,80}{0,78} \cdot 27,2}=4,1 \\
& \mathrm{~s}_{\tau}=\frac{152}{\frac{1,35}{0,67} \cdot 9,3+0,05 \cdot 9,3}=7,9 \\
& \mathrm{~s}=\frac{4,1 \cdot 7,9}{\sqrt{(4,1)^{2}+(7,9)^{2}}}=3,6>[\mathrm{s}]
\end{aligned}
$$

Như vậy hệ số an toàn tại các tiét diện I-I và II-II đếu lón hon hệ sơ an toàn cho phép $[s]=1,5 \div 2$. Ta có thể giảm bớt đường kính trục : láy đường kính tại chố láp bánh răng $\mathrm{d}_{1}=60 \mathrm{~mm}$; đường kính tại chố lắp ở lăn $\mathrm{d}_{0}=\mathrm{d}_{1}-5=55 \mathrm{~mm}$; đường kính tại chỗ lấp khớp nơi $\mathrm{d}_{\mathrm{k}}=\mathrm{d}_{\mathrm{o}}-5=50 \mathrm{~mm}$.

Tại tiết diện I-I lắp bánh râng, ứng suất uơn

$$
\sigma_{\mathrm{u}}=491000 /\left(0,1.60^{3}\right)=22,7 \mathrm{MPa}
$$

Ửng suăt xoán $\tau=620000 /\left(0,2.60^{3}\right)=14,4 \mathrm{MPa}$
Vậy tại tiết diện này $\sigma_{\mathrm{a}}=\sigma_{\mathrm{u}}=22,7 \mathrm{MPa} ; \sigma_{\mathrm{m}}=0 ; \tau_{\mathrm{a}}=\tau_{\mathrm{m}}=\tau / 2=7,2 \mathrm{MPa}$.
Hệ sô an toàn

$$
\begin{gathered}
s_{o}=\frac{256}{\frac{1,75}{0,78} \cdot 22,7}=5 ; s_{\tau}=\frac{152}{\frac{1,5}{0,67} \cdot 7,2+0,05 \cdot 7,2}=9,2 \\
s=\frac{5 \cdot 9,2}{\sqrt{5^{2}+(9,2)^{2}}}=4,4
\end{gathered}
$$

Tại tiết diẹn II-II, kê chơ lấp δ, có đường kính $\mathrm{d}_{\mathrm{k}}=50 \mathrm{~mm}$:

$$
\begin{aligned}
& \sigma_{\mathrm{a}}=\sigma_{\mathrm{u}}=452200 /\left(0,1.50^{3}\right)=36,2 \mathrm{MPa} ; \sigma_{\mathrm{m}}=0 \\
& \tau_{\mathrm{a}}=\tau_{\mathrm{m}}=\tau / 2=620000 /\left(0,2.50^{3} .2\right)=12,4 \mathrm{MPa}
\end{aligned}
$$

Hế sơ an toàn

$$
\begin{aligned}
s_{\sigma}=\frac{256}{\frac{1,80}{0,78} \cdot 36,2} & =3,1 ; \mathrm{s}_{\tau}=\frac{152}{\frac{1,35}{0,67} 12,4+0,05 \cdot 12,4}=5,9 \\
\mathrm{~s} & =\frac{3,1 \cdot 5,9}{\sqrt{(3,1)^{2}+(5,9)^{2}}}=2,7
\end{aligned}
$$

Vì hệ so an toàn của trục khá lớn cho nên không cấn tính toán trục vế độ cứng. Đường kính các đoạn trục được lấy như sau : $\mathrm{d}_{1}=60 \mathrm{~mm}, \mathrm{~d}_{\mathrm{o}}=55 \mathrm{~mm} ; \mathrm{d}_{\mathrm{k}}=50 \mathrm{~mm}$. Tuy nhiên, cần kết hợp với tính toán ơ lăn đe̛ cơ quyớt định cuới cùng vê kích thước trục.

Chưong 16

ổ trưot

16.1. KHÁI NIẸMM CHUNG

16.1.1. Công dụng và phân loai

Ổ trục được dūng đê đỡ các trục quay. Ổ trục chịu tác dụng của các lực đật trên trục và truyến các lực này vào thân máy, bệ máy. Nhờ có ơ trục, trục cơ vị trí nhất định trong máy và quay tự do quanh một đường tâm đả định.

Theo dạng ma sát trong 6 , chia ra : δ ma sât trươt, gọi tát là δ truọt và δ ma sát lân, gọi tát là σ lán.

Ở trục co thé chịu lực hương tâm, lực dọc trục hoạ̃c chịu vừa lực hương tâm vưa lực dọc trục. Ơ chịu được lực hương tâm gọi là σ d $\bar{\sigma}, 6$ chịu dược lực dọc trục goi là б chạn, δ chịu được cả lực hương tâm cả lực dọc trục gọi là σ dō chẹn.

Hình 16.1
Hinh 16.2
Ở trươt. Bê mặt làm viẹc của ồ trượt cũng như của ngōng trục có thể là mặt trục (hình 16-1a), mặt phảng (hỉnh 16-1b), mặt côn (hình 16-1c) hoạc mặt cấu (hinh 16-1d).

Ổ trượt chặn thương làm việc phới họ̣p vá̛i σ truợt dã (hình $16-1 \mathrm{~b}$), là K° trượt chịu được lực hướng tâm. Phần lớn các ơ trự̛̣ đỡ (hình $16-1 a$) có thể chịu đưọc tải trọng dọc trục nhỏ nhờ có vai trục và góc lự̛̣n tỳ vào mép σ dược vát tròn.

Ổ trự̛̣ có bê mạt côn (hình $16-1 \mathrm{c}$) it dùng, chi trong những trưòng họ̣p cân điếu chinh khe hở do mòn 0 . Ồ cấu cūng ít gập. Dùng loại 6 này trục có thê nghiêng tự do.

Khi trục quay, giữa ngōng trục và ó có trự̛̣t tương đđí, do đó sinh ra ma sát trự̛̣t trên bê mặt làm việc của ngōng trục và δ.

Hỉnh 16-2 trình bày kêt cấu của mọt δ trự̛̣t đơn giản, gôm thân δ 1, lót ô 2 , có rãnh dấu 3. Lớt ờ là bộ phạn chủ yếu của ơ. Lót 6 được làm bằng vật liệu có hệ số ma sát thấp.

16.1.2. Phạm vi sử dụng 6 trự̛̣t

Hiện nay trong các ngành ché tạo máy 6 trượt dùng it hơn 6 lăn. Tuy nhiên trong một số trường họ̣ dưới dây, dùng δ trượt có nhiéu ưu việt hon :

- Khi trục quay với vận tớc rất cao, nêu dùng ô lăn, tuởi thọ của ớ (so giờ làm việc cho tới khi hỏng) sê thấp ;
- Khi yếu cầu phương của trục phải rât chính xác (trong các máy chính xác), ổ trượt gồm ít chi tiết nên dễ chê tạo chính xác cao và co thể điêu chinh đự̛̣c khe hở ;
- Trục có đường kính khá lơn (đường kính $\geqslant 1 \mathrm{~m}$), trong trường hạp này nếu dùng δ lăn, phải tụ chế tạo la̛y rất kho khăn ;
- Khi cân phải dùng 6 ghép đê dê láp, tháo (thí dụ đơi vơi trục khuỷu) ;
- Khi 6 phải làm viẹc trong những điếu kiện đạ̣c biệt (trong nước, trong các môi trương ăn mòn v.v...), vì có thế chê tạo o o trượt bằng những vật liệu như sao su, gơ, chất dẻo v.v... thích hợp với môi trường ;
- Khi có tải trọng va đập và dao đọng; fơ trượt làm viẹc tớt nhờ khả năng giảm chấn của màng dấu ;
- Trong các cơ cấu có vận tơc thắp, không quan trọng, ré tiên.

16.2. MA SAT VÀ BÔI TRON δ Ó TRƯỢ

16.2.1. Các dạng ma sát trong 6 trựt

Ma sát và bơi tronn cơ tác dụng quyết định khả năng làm việc của σ trự̛̣. Nếu công suắt mât mát do ma sát quá lợn, nhiệt sinh nhiêu, cơ thể gây nên hiện tự̛̣g dính δ 就 ngơng trục. Mặt khác vì có trượt tương dơi giữa ngơng trục và lót δ, nếu bôi trơn khơng tơt, ngöng trục và lớt δ seẻ bị mòn nhanh. Khi bị mòn nhiếu, σ không dùng được nừa.

Đé giàm ma sát và mài mòn, cân bôi tron 6 .
Tùy theo diêu kiện bôi trơn 0 , có các dạng ma sát : ứt, nừa ứt, nửa kho và kho
Ma sát uớt. Ma sát ướt sinh ra khi bê mặt ngơng truc và ơ dược ngãn cách bời lớp bôi trơn, có chiếu dày lớn hơn tờng sơ độ mấp mo bê mật (hình 16-3) :

$$
\begin{equation*}
h>R_{Z_{1}}+R_{Z_{2}} \tag{16-1}
\end{equation*}
$$

Nhờ có lớp dầu ngăn cách, ngõng trục và lót ổ không trực tiếp tiếp xúc với nhau, do đó không bị mài mòn.

Trong chế độ bôi trơn ma sát ướt, chuyển động tương đối giữa ngõng trục và lót ổ bị cản bởi nội ma sát của lớp bôi trơn. Hệ số ma sát uớt khoảng 0,001 $\div 0,008$ (trị số này có khi nhỏ hơn hệ số ma sát lăn).

Ma sát nưa uớt. Khi điếu kiện (16-1) không được thỏa mãn, nghĩa là lớp bôi trơn không đủ ngập các mấp mô bế mặt, thì có ma sát nửa uớt. Trị số hệ số ma sát nửa ướt không những phụ thuộc chất lượng dấu bôi trơn mà còn phụ thuộc vật liệu bế mặt ngõng

Hinh 16.3 trục và lót ở. Đối với những loại vật liệu giảm ma sát thường dùng, hệ số ma sát có trị số vào khoảng từ 0,01 đến 0,1 .

Khi làm việc trong chế độ bôi trơn ma sát nửa ướt, ngõng trục và lót ổ bị mài mòn.

Ma sát khô và nưa khô. Ma sát khô và nửa khô xảy ra khi các bế mặt làm việc không được bôi trơn.

Ma sát khô là ma sát giữa các bế mặt tuyệt đối sạch trực tiếp tiếp xúc với nhau. Hệ số ma sát khô cao hơn các hệ số ma sát khác (có thể lớn hơn 1), thường bằng $0,4 \div 1$.

Trong thực tế, dù được làm sạch rất cẩn thận, trên các bế mặt làm việc bao giờ cũng có những màng mỏng khí, hơi ẩm hoặc mỡ, hấp phụ từ môi trường xung quanh. Ma sát giữa các bế mặt có màng hấp phụ, khi chúng trực tiếp tiếp xúc nhau, gọi là ma sát nưa khô. Tuy bế dày của màng hấp phụ chỉ bằng vài phẩn mười nanômét*, nhưng có tác dụng làm giảm hệ số ma sát khá nhiếu. Hệ số ma sát nửa khô vào khoảng $0,1 \div 0,3$.

Khi ma sát nửa khô (hoặc khô) các bế mặt làm việc bị mài mòn nhanh.
Như vậy, ổ trượt làm việc tốt nhất khi được bôi trơn ma sát ướt.
Để thực hiện chế độ bôi trơn ma sát ướt có thể dùng các phương pháp :

- Bôi trơn thủy tình : bơm vào ở dầu có áp suất cao, để có thể nâng ngõng trục. Phương pháp này đòi hỏi phải có thiết bị nén (tạo áp suất) và dẫn dầu rất phiến phức.
- Bôi trơn thủy động : tạo những điếu kiện nhất định để dầu theo ngõng trục và khe hở, gây nên áp suất thủy động cân bằng với tải trọng ngoài. Phương pháp bôi trơn thủy động được dùng nhiếu hơn.

16.2.2. Nguyên lý bôi trơn thủy dộng

Giả thiết có hai tấm phả̉ng 1 và 2 nghiêng với nhau một góc nào đó, chuyển động với vận tốc tương đối v (hình 16-4). Kích thước các tấm theo phương vuông góc với hình vẽ được coi như lớn vô cùng. Lớp bôi trơn nằm giữa hai tấm có độ nhớt động

[^1]

Hinh 16.4
lực μ. Khi tắm 1 chuyển động so với tấm 2 (theo chiếu như trên hình 16.4), lớp dầu dính vào be mặt tấm bị kéo theo và nhờ có đọ nhớt, các lớp dầu ơ phía dưới cưng chuyển động theo. Dẩu bị dồn vào phần hẹp của khe hở và bị nén lại, tạo nên áp suất (áp suắt dư).

Sự thay đổi áp suất trong lớp dầu nà̀m giữa hai tấm (gọi là chêm dầu, vl cơ hình dạng giơng nhự cái chêm) được xác định theo phương trỉnh Râynờn

$$
\begin{equation*}
\frac{\mathrm{dp}}{\mathrm{dx}}=6 \mu \mathrm{v} \frac{\mathrm{~h}-\mathrm{h}_{\mathrm{m}}}{\mathrm{~h}^{3}} \tag{16-2}
\end{equation*}
$$

trong dơ h_{m} - trị sớ khoảng hở tại tiết diện chịu áp suất lớn nhá̛t ;
h - trị só khoảng hở tại tiét diện có tọa độ x.
Xét một phân tó dầu, có kich thước $\mathrm{dx} \times \mathrm{dy} \times 1$ (hỉnh 16-4). Trục x được lăy theo phương của chuyển động, trục y vuồng gơe với trục x .

Vì có chuyển động tương đới giữa các lớp dâu trong khe hở nên sinh ra lực cản trượt. Theo định luật Niutơn lực cân trượt trên một đơn vị diện tích

$$
\begin{equation*}
\tau=\mu \frac{\mathrm{dv}_{\mathrm{x}}}{\mathrm{dy}} \tag{16-3}
\end{equation*}
$$

Từ điéu kiện cân bằng của phấn tơ đang xét (hình 16-4), ta có

$$
\frac{\mathrm{dp}}{\mathrm{dx}}=\frac{\mathrm{d} \tau}{\mathrm{dy}}
$$

Do đó có thể viết

$$
\begin{equation*}
\frac{\mathrm{d}^{2} v_{x}}{\mathrm{dy}^{2}}=\frac{1}{\mu} \cdot \frac{\mathrm{dp}}{\mathrm{dx}} \tag{16-4}
\end{equation*}
$$

Giải phương trỉnh ($16-4$), chú ý đên các điêu kiẹn biên : tại bê mạ̣t tám đứng yên $\mathrm{y}=0, \mathrm{v}_{\mathrm{x}}=0$ và tậ bê mật tấm chuyển động $\mathrm{y}=\mathrm{h}, \mathrm{v}_{\mathrm{x}}=\mathrm{v}$; tỉm dược vận tốc (theo phương x) của lớp dầu có tung độ y

$$
\begin{equation*}
v_{x}=v \frac{y}{h}+\frac{y}{2 \mu}(y-h) \frac{d p}{d x} \tag{16-5}
\end{equation*}
$$

Thể tích dâu chảy qua khoảng hơ có chiêu cao h và chiếu rộng bầng 1 đơn vị trong thời gian 1 giây

$$
q=\int_{0}^{h} v_{x} d y=\frac{h v}{2}-\frac{h^{3}}{12 \mu} \cdot \frac{d p}{d x}
$$

Giả thiết rà̀ng dòng dâu liên tục. Do đó thể tích dấu chảy qua khoảng hở h và khoảng hở h_{m} (tại tiết diện có $p=p_{\max }$ và $\frac{d p}{d x}=0$) trong thời gian 1 giây là bàng nhau :

$$
\begin{equation*}
\mathrm{q}=\frac{\mathrm{hv}}{2}-\frac{\mathrm{h}^{3}}{12 \mu} \cdot \frac{\mathrm{dp}}{\mathrm{dx}}=\frac{\mathrm{h}_{\mathrm{m}} \mathrm{v}}{2} \tag{16-6}
\end{equation*}
$$

Từ đó rút ra

$$
\frac{\mathrm{dp}}{\mathrm{dx}}=6 \mu \mathrm{v} \frac{\mathrm{~h}-\mathrm{h}_{\mathrm{m}}}{\mathrm{~h}^{3}}
$$

Đớ thị biến thiên áp suất (dư) trong lớp dầu được trịnh bày trên hình 16-4. Áp suất dâuu (áp suất dưo tại cửa vào và cửa ra tất nhiên là bà ng sớ không. Áp suất cực dại tại tiết diện có $h=h_{m}$. lúc này $\frac{d p}{d x}=0$.

Áp suất trong lớp dầu tăng lên càng nhanh, nghĩa là khả năng tả̉i của lốp dầu càng lớn, khi độ nhớt μ và vận tớc v càng lớn.

Qua những điê̂u trình bày trên đây có thể rút ra những diều kiện chủ yếu để tạo nên ma sát ướt bà̀ng cách boi trơn thủy động :

- Giữa hai bé mạ̣t trượt phải tạo khe hở hình chêm.
- Dầu phải có độ nhớt nhất định và liên tục chảy vào khe hở.
- Vận tốc tương đới giữa hai bế mặt trượt phải có phương, chiêu thích hợp và trị só đủ lớn đê áp suất sinh ra trong lớp dấu có đư khả năng cân bằng với tải trọng ngoài.

Nếu kết cấu của ớ trượt không có khe hở hình chêm, ví dụ như đối với loại ở chạ̉n trình bày trên hỉnh $16-1 \mathrm{~b}$, không thê tạo nên ma sát ướt bầng phương pháp bôi trơn thủy dộng dược.

Đới với các $\begin{gathered}\text { đỡ, khe hờ hỉnh chêm vốn đã được }\end{gathered}$ tạo sẵn bởi kết cấu (do đường kính ngõ̃ng trục nhỏ hơn đường kính ờ và tâm ngōng trục nằm lệch so với tâm của ờ).

16.2.3. Khả năng tài của 6 dó

Khả năng tải của $\overline{\text { ón }}$ đō bôi trơn thủy động được xác định trên cơ sở phương trình Râymôn (16.2).

Giả sử ngơng trục chịu tải trọng F_{r}, khi chưa quay ngõng trục tiếp xúc trực tiếp với lớt ở. $^{\text {Vl }}$ đường kính ngơng trục bao giờ cũng nhỏ hơn đường kính lót δ, cho nên giữa ngōng trục và lờt ó có khe hở và tâm O của ngơng trục nằm lệch với tâm O của lót ${ }^{\text {ơ }}$. Khi quay, ngōng trục cuón då̉u vào khoảng hẹp dần giữa ngōng trục và lớt ổ, dầu bị ép và cơ áp suất lớn. Khi trục quay với vận tốc đủ̉ lớn, ngõng trục được nâng hẳn lên : tải trọng F_{r} được cân bàng với áp lực sinh ra trong lớp dầu (hình 16-5). Ổ trượt lúc này làm việc với chế độ bôi trơn ma sát ướt.

Hinh 16.5

Dể tinh toán, ta dùng các kí hiệu sau đây :

$$
\delta=\mathrm{D}-\mathrm{d}-\text { đọ hở aường kinh } ; \psi=\frac{\mathrm{D}-\mathrm{d}}{\mathrm{~d}}=\frac{\delta}{\mathrm{d}}-\mathrm{a} \text { đọ hờ tưang đбi } ;
$$

trong đó D - đường kinh lót δ; d - đường kính ngõng trục.
Vị trí của ngõng trục trong ô được đạc trưng bởi đọ lệch tam tuyệt đói e và độ lệch tam tương đơi

$$
\chi=\frac{\mathrm{e}}{\delta / 2}=\frac{2 \mathrm{e}}{\delta}
$$

Chiếu dày nhỏ nhất của lớp dâu (hình 16-5)

$$
\begin{equation*}
h_{\min }=\frac{\delta}{2}-\mathrm{e}=\frac{\delta}{2}(1-\chi) \tag{16-7}
\end{equation*}
$$

Chiêu dày của lớp dâu tại tiết diện ứng với gợc φ (hinh 16-5)

$$
h=\frac{\delta}{2}+e \cos \rho=\frac{\delta}{2}(1+\chi \cos \rho)
$$

Chiếu dày lớp dâu tại tiêt diện ứng với gớc φ_{o}, có $\mathrm{p}=\mathrm{p}_{\max }$

$$
\mathrm{h}_{\varphi \mathrm{o}}=\frac{\delta}{2}\left(1+\chi \cos \varphi_{\mathrm{o}}\right)
$$

Đê tiện tính toán, ta dùng hệ tọa dộ dộc cực. Viét lại phương trinh (16-2) theo hẹ tọa độ độc cực, với $h=h_{\varphi}$ và $h_{m}=h_{\varphi o}$ rơii bién đới, ta có

$$
\begin{aligned}
\mathrm{dp} & =6 \mu \frac{\omega}{\psi^{2}} \cdot \frac{(1+\chi \cos \varphi)-\left(1+\chi \cos \varphi_{\mathrm{o}}\right)}{(1+\chi \cos \varphi)^{3}} \mathrm{~d} \varphi \\
& =6 \mu \frac{\omega}{\psi^{2}} \cdot \frac{\chi\left(\cos \varphi-\cos \varphi_{\mathrm{o}}\right)}{(1+\chi \cos \varphi)^{3}} \mathrm{~d} \varphi
\end{aligned}
$$

trong đó $\omega=\frac{\mathrm{v}}{\mathrm{d} / 2}=\frac{\pi n}{30}$ - vạn tơe góc của ngõng trục (n là so vòng quay trong 1 phút).

Áp suất p_{φ} tại tiết diẹn ứng với gơc φ

$$
\mathrm{p}_{\varphi}=\int_{\varphi_{1}}^{\varphi} \mathrm{dp}
$$

Khả nảng tải của lớp dâu trong 6, nghỉa là tải trọng hương tám F_{r} mà lôp dâu có the chịu được, được xác định bàng tich phan hinh chiéu của ap suát p_{φ} lên phương của tải trọng ngoài (miến tích phan là miên có áp suất thủy động choán cung từ φ_{1} đến φ_{2} và có chiếu dài là chiêu dài l. của $\mathbf{~ 6}$)

$$
\begin{equation*}
\mathrm{F}_{\mathrm{r}}=\frac{\mathrm{ld}}{2} \int_{\varphi_{1}}^{\varphi_{2}} \mathrm{P}_{\varphi}\left[-\cos \left(\varphi_{\mathrm{a}}+\varphi\right)\right] \mathrm{d} \varphi=\frac{\mu \omega}{\psi^{2}} \mathrm{~d} \phi \tag{16-8}
\end{equation*}
$$

vói

$$
\phi=3 \int_{\varphi_{1}}^{\varphi_{2}} \int_{\varphi_{1}}^{\varphi} \frac{\chi\left(\cos \varphi-\cos \varphi_{\mathrm{o}}\right)}{(1+\chi \cos \varphi)^{3}} \mathrm{~d} \varphi\left[-\cos \left(\varphi_{\mathrm{a}}+\varphi\right)\right] \mathrm{d} \varphi
$$

ϕ là hàm số của vị trí ngōng trục trong ố, gại là hẹ só khả na̛ng tải của δ. Hệ só khả năng tả̉i ϕ không cơ thứ nguyen, tìm được bà̉ng phương pháp tich phân đờ thị.

Khi lập công thức đế tính khả nảng tải của lớp dấu, ta giả thiết ràng chiếu dài của δ ó là vô hạn, nên dấu không bị chảy ra hai đầu $\begin{gathered}\text {. T Trên thực té́, chiếu dài } \delta \text { ó có }\end{gathered}$ hạn, do đơ phải xét đến hiện tượng dấu chảy ra hai đấu ơ và tiến hành điếu chinh trong tính toán. Bảng $16-1$ cho các trị sớ của ϕ, phụ thuộc chiêu dài tương đơi $\frac{l}{d}$ và độ lệch tâm tương đới χ của ơ, có xét đến đạ̣c điểm chiếu dài 6 cơ hạn (dầu bị chảy ra ngoài) và trong trường hợp $\varphi_{2}-\varphi_{1}=180^{\circ}$ (chêm dâu choán một nửa cung tròn).

Néu thay $\omega=\frac{\pi n}{30}$ vào cong thức (16-8) và dùng đơn vị độ nhớt của dầu là centipoazo và kich thước 6 là mm , ta co

$$
\begin{equation*}
\mathrm{F}_{\mathrm{r}}=\frac{1,07 \cdot 10^{-10} \mu \mathrm{n} l \mathrm{~d} \Phi}{\psi^{2}}, \mathrm{~N} \tag{16-9}
\end{equation*}
$$

Từ công thức (16-8) cũng có thể viết

$$
\begin{equation*}
\phi=\frac{\mathrm{p} \psi^{2}}{\mu \omega} \tag{16-10}
\end{equation*}
$$

trong đó $\mathrm{p}=\frac{\mathrm{F}_{\mathrm{r}}}{l \mathrm{~d}}$ áp suât quy ước, $\mathrm{N} / \mathrm{m}^{2}$

$$
\mu-d o ̣ ̂ n h o ̛ ́ t ~ c u ̉ a ~ d a ̂ u, ~ N s / m^{2}
$$

Bảng 16.1
Hê so khả nãng tải ϕ

1/d	x													
	0,3	0,4	0,5	0,6	0,65	0,7	0,75	0,8	0,85	0,9	0,925	0,95	0,975	0,99
	Hệ só khả nãng tải ϕ													
0,3 0,4	0,0522	0,0826	0.128	0.203	0,259	0,347	0,475	0.699	1,122	2,074	3,352	5,730	15,15	50,52
0,5	0,0893	0,141 0,209	0,216	0,399	0.431	0.573	0,776	1079	1775	3,195	5,055	8,393	21,00	65,26
0,6	0,182	0,283	0.427	0.655	0,819	0,079	1.418	2.572	2,428 3,036 3	4,261	${ }_{7}^{6.615}$	10,706	${ }^{25962}$	-75,86
0,7	0,234	0,361	0,538	0,816	1014	1,312	1720	2,399	3,580	6,029	9,072	14,64	29.17	83,21
0,8	0,287	0,439	0,647	0,972	\%,99	1,538	1,965	2,754	4,053	6,721	9,072	14,14 15,37	3188 3399	88,90
0,9	0,339	0,515	0,754	1,118	1,371	1,745	2248	3,067	4,459	7,294	10,753	16,37	${ }^{3} 5.96$	9289
10	0,391	0.589	0,853	1253	1528	1,929	2469	3,372	4,808	7,772	H138	17,18	37,00	89,95
11	0.440	0,658	0,947	${ }_{1}^{1377}$	1669	2,097	2,664	3580	5.016	8,186	ti, 41	7786	38,12	10715
12 13	0,487 0,529	0,723 0.784	14033	1489	1796	2,247	2,838	3,787	5,364	8.533	12,35	18,43	39,04	10290
15	0,610	0,784 0,891	1,248	1.590	1.1912	2,379 2,600	2990	3,968	5,586	8,831	12.73	18.91	39,81	104,42
2,0	0,763	1,091	1.483	2.070	2446	2,981	3,671	4,778	6,545	9,304	13,34 14,34	19,68 20,97	4107 43,11	106,84 10,79

Các công thức trên đây cho thắy rằng khả năng tải F_{r} của ơ tăng til lệ thuận với độ nhớt cưa dầu và vận tớc quay, và giảm xuông khi tăng khe hở và chiéu dày nhỏ nhất của lớp dấu. Do đó, không cần tăng kích thước ơ và thay đởi vật liệu, ta vẫn có thể tâng khả năng tải của ơ bảng cách tăng độ nhá̛t của dầu hoặc giảm khe hở của 6 . Tuy nhiên, các biện pháp này làm tång thêm ma sát và nhiệt trong 6 .

16.3. VẬT LIẸU BỐI TRON

Theo trạng thâi vật lí, có thể chia các vật liệu bôi trơn ra làm ba loại : dầu bôi trơn, mỡ bôi trơn và chăt rán bôi tron.

16.3.1. Dâu bồi tron

Dầu bơi trơn là vậ liệu bôi trơn chù yêu. Dâu bôi trơn có các loại : dâu khoáng, dấu dộng vật (dấu xương, dâu cá v.v...) và dầu thực vật (dầu gai, dâu thảu dẩu v.v...), trong đơ dấu khoáng được dùng nhiêu nhất. Dâu động vạt và dâu thực vật bôi tron rất tơt, dễ thực hiện ma sát ựt nhựng dễ biên chất và giá đát nên ft dùng. Tuy nhiên dể tâng thêm chất lượng bôi trơn, người ta pha thềm vào dấu khoáng một it dấu dộng vật hoặc dấu thực vật.

Dấu bôi trơn có hai tính chắt quan trọng nhắt là độ nhớt và tính năng bôi trơn.
Dọ nhơt. Đọ nhớt hoạc ma sát trong của chất lỏng là khả năng cản trự̛̣ của lớp này đơi với lớp khác trong chất lỏng. Trong điêu kiện ma sát ướt, độ nhớt là nhân tố quan trọng nhất, quyết định khả năng tải của lớp dâu.

Dọ nhớt dông luc μ dược dùng trong các tính toán vê bôi trơn thủy dộng. Độ nhát động lực có đơn vị là niutơn giây trên mét vuông ($\mathrm{Ns} / \mathrm{m}^{2}$). $\mathrm{Ns} / \mathrm{m}^{2}$ là độ nhớt động lực của một chất đônng tính, đảng hướng, chảy tẩng khi giữa hai lốp phả̉ng song song với dòng chảy cách nhau 1 mét co hiệu vận tớc (vạn tớc tương đơi) $1 \mathrm{~m} / \mathrm{s}$ và trên bê mạt các lớp đó xuất hiện ưng suất tiếp $1 \mathrm{~N} / \mathrm{m}^{2}$. $1 / 10 \mathrm{Ns} / \mathrm{m}^{2}$ dược gọi là poazo (k hiệu P). Trong thực tế thường dùng centipoaza, kí hiẹu là cP ($1 \mathrm{cP}=\frac{1}{100} \mathrm{P}=10^{-3} \mathrm{Ns} / \mathrm{m}^{2}$).

Trong sàn xuất dâu bôi trơn, thường dùng $d \oint$ nhớt dọng ν, xác định theo thời gian chảy (nhờ trọng lượng bản than) của mọt khđi lự̛̣g dâu nhăt định qua ơng nhó giọt. Vl vạy dọ nhơt dọng phụ thuộc mạt dọ̣ : nó là ti so giữa dộ nhơt dọng lực với mạt đọ (khđ̛i lượng riêng). Dơn vị của dộ nhớt đọng là mét vuông trên giay ($\mathrm{m}^{2} / \mathrm{s}$), là độ nhớt động của một chất cơ đọ nhớt động lực $1 \mathrm{Ns} / \mathrm{m}^{2}$ và khơi lượng riêng $1 \mathrm{~kg} / \mathrm{m}^{3}$. Trong thực tê gọi $10^{-4} \mathrm{~m}^{2} / \mathrm{s}$ là stơ (ki hiệu : St) và thường dùng centistóc ($1 \mathrm{cSt}=\frac{1}{100} \mathrm{St}=10^{-6} \mathrm{~m}^{2} / \mathrm{s}$). Như vậy giữa độ nhớt động lực $\mu\left(\mathrm{Ns} / \mathrm{m}^{2}\right)$ và dộ nhớt động $\nu\left(\mathrm{m}^{2} / \mathrm{s}\right)$ có liên hệ

$$
\begin{equation*}
\mu=\gamma_{1} \cdot v \tag{16-11}
\end{equation*}
$$

trong đó : khối lượng riêng γ_{t} của dâu ở nhiệt độ $\mathrm{t}^{\circ} \mathrm{C}$ được tînh bà̀ng $\mathrm{kg} / \mathrm{m}^{3}$.
Khi nhiệt độ thay đơi độ nhớt cūng thay đởi : nhiệt độ càng tãng độ nhớt càng giảm. Có thễ tính gần đúng độ nhớt μ_{t} ở nhiệt độ t khi đả biết độ nhớt $\mu_{\text {to }}$ ở nhiệt độ t_{0} theo công thức

$$
\begin{equation*}
\mu_{\mathrm{t}}=\mu_{\mathrm{to}}\left(\frac{\mathrm{t}_{\mathrm{o}}}{\mathrm{t}}\right)^{\mathrm{m}} \tag{16-12}
\end{equation*}
$$

trong đó số mū $\mathrm{m}=2,6 \div 3$. Công thức $(16-12)$ chỉ dùng khi nhiệt độ t không khác nhiêu với t_{o}.

Tính nãng bôi tron của da̛u là yếu tớ có ý nghia quyết định trong trường hợp không thể thực hiện được bôi trơn ma sát ướt. Tính nảng bôi trơn là khả nång dâ̂u có thế tạo thảnh màng bơi trơn cơ sức cản trượt thấp, hấp phụ vững chác bê mật ngõng trục và lớt $\begin{gathered}\text {. Nhờ có tính năng bôi trơn, nên dầu có thể làm giám ma sát và mài mòn }\end{gathered}$ khi ớ làm việc với chê độ ma sát nửa ướt hoạ̣c nửa khô.

Các loại dàu bơi tron thường dùng trong chế tạo máy là dâu công nghiệp nhẹ như dầu vêlôxit, dẫu vadalin, dầu phẩn li ; dẩu công nghiệp trung bình như dầu công nghiệp 12, 20, 30, 45 hoạ̣c 50 , dảu tua bin $22,30,46$ hoạ̣c 57 (các chữ số chi độ nhót động trung binh, $\mathrm{cSt}, \mathrm{ơ}^{2} 50^{\circ} \mathrm{C}$) ; dầu công nghiệp nậng như dà̛u xilanh 11,24 v.v... (các chữ số chl độ nhớt động trung bình, cSt, ở $100^{\circ} \mathrm{C}$).

Để bôi tron ơ trượt cūng dùng các loại dầu trên. Khi ngõng trục quay với tớc độ cao cần chọn dấu cơ độ nhớt thấp, khi tải trọng tác dụng lên δ lớn cần chọn dầu có độ nhớt cao. Nêu dùng dầu không đủ độ nhớt, ơ sẽ chơng bị mòn hỏng, nếu dùng dầu có độ nhớt quá cao sẻe tǎng mất mát công suất do ma sát.

Bảng 16.2 cho các trí só nhớt động lực của một só loại dầu thường dùng nhất ở các nhiệt độ khác nhau

Bảng 16.2

Tên dầu	Khới lượng riêng γ của dầu ở $20^{\circ} \mathrm{C}$ ($\mathrm{g} / \mathrm{cm}^{3}$)	Độ nhơt động lực μ (cP) đ̛̉ nhiệt độ ${ }^{\circ} \mathrm{C}$						
		30	40	50	60	70	80	90
Dâu vêloxit	0,87	8,2	5,8	4,5	3,5	2,8	-	-
Dâu cong nghiệp 12	0,89	25	16,5	11,8	8,5	6,3	4,8	-
Dầu công nghiệp 20	0,89	41	26	17	13	9,2	6,9	5,1
Dâu công nghiệp 30	0,89	${ }^{\prime} 75$	40	26	18,5	13	9,4	7,1
Dầu công nghiệp 45	0,89	118	70	40	23	19	13,5	9,3

16.3.2 Mớ bôi trơn và chát rắn bối trơn

Mỡ bói tron là hốn hợp của dầu khoáng (thường là dầu công nghiệp $20,30,45$) và chắt làm đặc. Mỡ bôi trơn chủ yéu dùng để giảm ma sát, chớng ăn mòn và có tác dụng che kín. Ma sát tỉnh của mõ̃ tương dơi lớn nên lưc mơ máy cần có mômen lợn hơn so với trường hợp dùng dầu bôi trơn. Tuy nhiên khi trục quay mỡ làm việc cūng tương tự như dầu và khi trục dừng, mõ lại không bị chảy ra ngoải.

Mô thường được dùng đo :

- các ô không dược che kín hoặc khó che kín ;
- các 6 cần che rất kín (ví dụ δ trục trong máy dệt) ;
- các ơ khó cho dâu thường xuyên.

Chất rấn bôi trợn chủ yếu là grafit cơlơit và sibunfua môlipđen. Chúng được dùng trong những trường hợp không thê đám bảo bôi trôn ma sát ướt mợt cách binh thường. Thường người ta trợn chất rán bôi trơn với dầu, mạ̣c dù không có dầu chúng vẫn cơ tác dụng bôi trơn tớt.

16.4 KÊT CẤU Ó TRƯỌT VA VẠT LỊ̣̂U LOT Ó̉

16.4.1. Kết cấu 6 trựt

Ố chủ yêu gờm có thân ơ, lớt δ, ngoài ra còn bọ phạn cho dầu và bọ phạn báo vệ.

Hinh 16.6

Than σ cơ thế làm liên với khung máy hoạc có thể chế tạo riêng bàng đúc hoạ̣c hàn và ghép váo trong máy. Thân δ được chế tạo thành một thế nguyên (ỡ nguyên) hoạc chế tạo thành nhiéu phần rời, thưỡng là hai nửa, rói ghép lại với nhau (ơ ghép).

Ó nguyên ché tạo đơn gián và co độ cứng lớn hơn ở ghép. Hình 16.6 giới thiệu một kiểu ờ nguyên đơn giản nhất, thấn ơ liên với khung máy (trong tời quay tay).

Hỉnh 16.2 trình bày kiếu ơ nguyên thường dùng nhất : thån © 1 làm bằng gang hoạ̣c thép; lớt 62 làm bằng vật liệu giảm ma sát, lớ δ được ép vào lố của than δ; trên lót δ° có rănh dâu 3. Phía trên thân ơ có lố cho dầu. Thân δ ghép vào khung máy bà̀ng bulơng.

Ổ nguyên có các nhược điếm sau :

- Khi khe hở giûa ngơng trục và ớ quá lớn (do mòn), không thé điéu chinh để giàm khe hở được.
- Ngõng trục chi có thê láp từ ngoài mút vào, do đó khi láp những loại trục có đường kính lớn hoặc cần lấp ở vào ngơng giũa sê khơ khăn, nhiếu khi không lâp được.

Ổ nguyên thường chl dùng trong các máy làm việc gián đoạn, cơ vận tớc thấp, tải trọng nhỏ như tời, máy trục quay tay v.v...

Ố ghép không có những nhược điếm trên, nghỉa là khe hở co thé điéu chinh được phần nào và lấp trục cūng dễ dàng. Trên hình 16.7 giơi thiệu mợt kiễu ở ghép thường
 theo lớ xuyên qua nấp vào nửa trên của ở rối theo các rẫnh dọc phân bơ đếu trên suót chiếu dài ngõng trục. Náp lấp vào đé bằng bulông hoặc vit cấy.

Lót ớ. Bê mặt ơ tiếp xúc với ngōng trục phải làm bằng vật liệu có hệ số ma sát thấp, thường là kim loại màu đất tiên và hiếm. Để tiết kiệm kim loại màu ta dùng
lớ 6 . Sau một thời gian làm việc lót $\delta^{\circ} \mathrm{bi}$ mòn, viẹc thay thé cuang dê dàng và đơ tớn kém hon, vi nêu không dùng lớt δ thì phài thay cả ơ. Lót ờ trong 6 nguyên cơ hinh

Hinh 16.7
Vi khi lơt ở bị mòn với chiếu sấu khoàng vài ba phần mười mm đã không được dùng nữa, cho nên chiếu dày lơp kim loại màu giảm ma sát khồng cần lấy lơn. Tuy nhiên,

Hinh 16.8 nếu chỉ làm lớt δ co chiếu dày như vậy thì không đủ độ bên và rất khơ chê tạo. Bởi vậy lót thường được làm bằng hai loạ vật liệu : nên lớt δ ờng thép hoạac gang (đơi với các ơ quan trọng nên lót ó làm bà̀ng đông thanh và một lơp mỏng kim loại giảm ma sát tráng lên nên lớt ớ . Trong sản xuát hàng loạt nhỏ hoạ̣c đơn chiếc còn dùng lớt δ bàng một thứ vật liệu, ché tạo tưong đới đơn giản (thí dụ lớt ơ bà̀ng gang giàm ma sát, têchtơlit, gỗ ép...).
 viẹc cụ̂ thể của trục. Néu yếu cấu phải hạn chê kich thước dọc trục hoạc nêu ó có khe hở nhở, làm viẹc với vận tớc lớn thi lấy $1 / \mathrm{d}$ nhỏ. Khi đữ̀ng tâm trục có độ nghieng nhơ so với đường tâm δ, có thể lấy $1 / \mathrm{d}$ lớn. Nếu tăng chiéu dài 1 , áp suấ trung bình trong 8 giảm, nhưng chl cân trục nghiêng một it so vơi ơ thi áp suất sinh ra tại vùng mép δ sê rất lơn cơ thê làm hỏng mép 6 . Ngược lại nếu lây chiêu dài $\delta \mathrm{l}$ l nhỏ quá, dâu dễ chảy ra ngoài mép ©̂́. Làm giảm khả năng tải của of. Dơi với nhiếu loại máy nên lay $1 / d=0,6 \div 1$.

Khi định ké̛t ca̛u của δ trưộ, phải chú ý dến hinh dạng và vị trí rânh dau. Tác dụng chủ yợu của rẫh dầu là đê phân bô đêu dầu bôi trơn trong 6 . Rảnh dêu cơ thé làm dọc theo chiếu trục, vòng theo chu vi, thường dùng rãnh dọc trục, qua 10 dâu vào (hinh 16.8 c).

Đơi với cac 6 trượt đực bôi trơn ma sát ươt, rânh dảu phải o ngoai vùng có áp suadt thưy đông, nêu không, khả nång tải của lớp dầu sẽ giàm (hinh 16.9). Dê đảm bảo cung cấp dầu mợt cách ôn định, cơ thê làm thềm tưi dầu (hình $16.7,16.8 \mathrm{~b}$ và 16.8 d). Không
 0,8 chiếu dài của δ. Ở nhūng δ chịu lực có điếm đạ́t có định trên trục (do đó khi trục quay, 6 chịu lực thay đơi), nên làm rãnh dâu trên ngơng trục.

Thông thường mặt ngoài lơt ô cơ hình trụ. Trường hợp khơ đảm bảo độ đồng trục của các ó lấp trên trục, mật ngoài lot $\begin{gathered}\text { ơ được chê tạo thành mặt cấu (hỉnh 16.10a) }\end{gathered}$ hoạc mật trụ có đường sinh ngán (hinh 16.10b).

Hinh 16.9

Hinh 16.10

Nhờ vậy khi trục bị nghiêng 6 có thế tự đông xoay theo trục. Loại δ này dược gọi là o tu lua.

Diêu chinh khe hở hoạc bû lại luọng mòn trong ớ là yêu cấu quan trọng dới với ờ của máy chinh xác hoặc ờ làm việc trong điêu kiẹn bị mòn nhanh. Có thễ điêu chinh khe hở của các δ ghép (hinh 16.7) bà̀ng cách bơt các tấm đệm giữa hai nửa lớt ơ và
 điêu chỉnh bàng vít hoặc chêm.

Trường hợp lớt ở nguyên, mật ngoài lót δ được chế tạo ở hình côn, một đầu có ren để vặn đai ớc, iố của thân ơ cũng cớ hình côn (hỉnh 16.11). Khi cẩn điếu chỉnh thì vặn đai óc, lơt σ bị bóp lại. Đế lớt δ dê biến dạng, mặt ngoài lớt σ được khoét bớt, chỉ đế chừa lại ba gân tỳ với lỡ thân ớ (hỉnh 16.11). Cũng co khi ché tạo lớt ớ có mặt ngoài là hình côn trơn, để dễ bién dạng, lơt ơ được xé mồt rãnh dọc. Kiếu lớt ơ này chl dùng trong các 6 không quan trọng vì khi điêu chinh khe hở bế mật làm việc của δ sé bị méo.

Hinh 16.11

Hinh 16.12

Trong 6 truợt chặn mặt tựa thường có hình vành khăn. Hlnh 16.12a trình bày một kiểu ở trượt chặn đơn giản, có mợt mặt tựa, chịu lực dọc trục theo mợt chiêu. Mút của trục (ngõng trục) tì vào đệm lót của δ; mặt dưới của đệm lớt có hỉnh chỏm cầu đé có thể tự lựa vị trí và dùng chớt để giữ cho không quay cùng với ngơng trục.

Trong ở chặn hai chiêu thường có láp chạt một đia có hai mặt tựa (hình 16.12 b), tùy theo chiêu tác dụng của lực, một trong hai mật tựa sẽ làm việc.

Trường hợp lực dọc trục lớn, dùng 6 có nhiêu gờ hình (16.12c) để tăng bế mặt tựa.
Trong δ trượt chặn khong có khe hở tự nhiên hinh chêm để tạo thành chêm dấu như trong 6 trự̛̣t đỡ. Vi vậy cẩn phải chế tạo khe hở hình chêm : trên hình vành khăn của đệm lót làm những rănh dầu hướng tâm và vát nghiêng bê mặt đệm lót. Hình 16.13a trình bày o trượt có mặt nghiêng vát theo một chiếu làm việc

Hinh 16.13 với trục quay một chiêu. Nêu trục quay hai chiếu, mặt nghiêng được vát hai chiếu (hình 16.13 b).

Để tăng khả năng tải của ở nên dùng kiếu 6 có các đệm lót tự lựa vị trí, như trên hinh 16.13 c .

16.4.2. Vạt liệu lót 6

Ví lớt ồ trực tiếp làm việc với ngõng trục, cho nên vậ liệu lớt 6 có tác dụng quan trọng đơi với khả năng làm việc của $\begin{gathered}\text { ón trự̛̣t. Phải chọn vật liệu lót } \sigma \text { sao cho có thể }\end{gathered}$ giảm được mất mát công suắt do ma sát giữa bế mạ̣t làm việc của ngõng trục với lót ớ và giảm bớt chi phí vê sửa chữa, thay the̛ do mòn. Thơng thường, trục đát hơn lót ơ rất nhiêu. Vi vậy, mợt mặt cần tồi be mặt ngōng trục đé có độ rắn cao, it bị mòn, mặt khác phải chọn vật liệu lót ơ thỏa mãn các yêu cầu chủ yếu sau dây :

- Hệ só ma sát thấp ;
- Có khả năng giám mòn và chớng dính ;
- Dẫn nhiệt tớt và hệ sớ nờ dài tháp (để khe hở trong ơ it bị thay đơi do nhiệt) ;
- Có đủ đọ bến.

Có thé chia vật liệu lót ơ thành ba loại lớn :
Vật liệu kim loại.
Vạt liẹu gom kim loại.
Vật liệu không kim loại.

Vật liệu kim loại

Babit. Babit là hợp kìm có thành phẩn chủ yếu là thiếc hoặc chì, tạo thành một nên mêm, có xen các hạt rấn antimon, đồng, niken hoặc cadmi v.v... Babit là loại vật liệu giảm ma sát, giảm mòn và chống dính rất tốt. Tuy nhiên vì có cơ tính thấp cho nên babit chỉ dùng để tráng thành 1 lớp mỏng khoảng vài phần mười mm lên lớt ở có độ bền cao hơn như đồng thanh, thép hoặc gang.

Babit nhiêu thiếc B83, 589 , 591 , B93 (tương ứng có $83,89,91,93 \%$ thiéc) dực dùng khi áp suất và vận tớc cao ($\mathrm{p} v \geqslant 15 \mathrm{MPa} . \mathrm{m} / \mathrm{s}$) , có thể làm việc với áp suất p tới 25 MPa và $\mathrm{pv}=100 \mathrm{MPa} . \mathrm{m} / \mathrm{s}$. Vì dễ bị chảy nên babit nhiếu thiếc chí làm việc ở nhiệt độ dưới $110^{\circ} \mathrm{C}$. Babit nhiếu thiếc có độ bến mòn thấp, do đơ không chịu được va đập mạnh.

Khi cần nâng cao độ bên mỏi và để tiết kiệm thiếc, dùng babit chì thiễc antimon COC 6-6 (88% chì, 6% thiếc, 6% antimon).

Ngoài ra, có thế dùng babit chl thiéc $\operatorname{B} 16$ v.v... để thay cho babit nhiếu thiếc.
Khi ở làm việc với chế độ tải trọng và vận tớc trung bình, dùng babit chì BK hoàn toàn không chứa thiếc. Loại này được dùng nhiếu trong các ổ bánh xe lưa.

Trường hợp ở làm việc với chế độ nhẹ, có thể dùng babit BC , là loại rẻ tiến nhất.
Dồng thanh. Khi vận tốc và áp suất cao (p đến 20 MPa), tải trọng thay đởi (như ở động cơ đốt trong), thường dùng đồng thanh chi EpC30 làm lót ổ. So với babit nhiêu thiếc, đồng thanh chì БpC30 co sức bên mỏi cao hơn. Dùng đồng thanh chì làm lót ổ, ngōng trục cẩn phải có độ rấn cao (ngõng trục nhất thiết phải tôi) và yêu cầu vê độ nhẳn lơt ở cūng như ngõng trục phải cao. Nếu các yêu cầu này được thỏa mān, đồng thanh chì có khả năng làm việc không kém babit, vì vậy được dùng nhiếu trong sản xuất ơ trượt hàng khбi và hàng loạt lớn.

Lớt δ bà̀ng đông thanh gây mòn ngơng trục nhiếu hơn so với lót δ tráng babit.
Đông thanh thiếc $\operatorname{SpO} \Phi 10-1$, БpOC $10-10$ cơ thê làm việc tớt trong phạm vi tớc độ và công suât khá rợng và thích hợp nhắt là khi áp suất cao, vận tốc trung bình. Tuy nhiên vil có chựa nhiếu thiếc, đa̛t tiên, nên vię̣c sử dụng cưng hạn chế.

Khi chế độ làm việc trung bình được dùng nhiêu nhất là đồng thanh thiếc - kẽm
 đồng thanh nhôm - sất làm việc với ngơng trục tôi.

Họp kim nhơm. Họp kim nhôm có hệ só ma sát cūng khá tháp, dẵn nhiệt và chạy mòn tốt, nhưng khi làm việc với vận tớc cao thỉ khả năng chống xước kém, hệ sớ dān nở vì nhiệt của hợp kim nhôm lớn. Hợp kim nhôm được dùng nhiếu nhất là họ̣ kim ACM 4-0,5 (3,5-4,5\% antimon, $0,3 \div 0,70 \%$ manhédi) chịu tải trọng va dập tốt. Hợp kim ACM $4-0,5$ là vật liệu chủ yếu làm lớt ớ trong các động cơ máy kéo, hợp kim nà̀y có thê thay thé đồng thanh chì EpC30.

Họp kim kêm. Hợp kim kẽm chủ yêu để làm lót of là hợp kim AM 10-5 (10% nhôm, 5% đồng, còn lại là kēm). Vi loại này có tính giảm ma sát tương đỡ tớt, nguyên liệu dē kiêm, chê tạo đơn giản và giá thành rè nên được dùng rộng rãi, thay babit B16 và đồng thanh.

Tuy nhiên, hợp kim ЦАМ $10-5$ có nhược điểm là chạy mòn không dược tốt, do đó đời hỏi chế tạo chính xác cao và độ nhẫn bé mặt cao ; ngoài ra, có hệ só nở dài rất lởn. Nhiệt độ lớn nhất cho phép của 8 là $80^{\circ} \mathrm{C}$.

Đồng thau. Đồng thau được dùng làm lớt ổ khi vận tớc ngông trục thá̛p (dưới $2 \mathrm{~m} / \mathrm{s}$). Các loại đông thau được dùng phổ biến hơn cả lả ЛА ЖМЦ 52-5-2-1, ЛМЦОС 58-2-2-2, ЈКС 80-3-3.

Gang xám. Đói với những trục quay chậm, áp suất trong ổ $\mathrm{p}=1 \div 2 \mathrm{MPa}$, tải trọtg ổn định, có thể dùng lót ổ bà̀ng gang xám CY 15-32, СЧ 18-36, СЧ 21-40, CY 24-44. Vận tốc ngơng trục không nên quá $0,5 \div 1 \mathrm{~m} / \mathrm{s}$, trừ trường hợp $p \leqslant 0,1$ MPa , vận tốc có thể đến $2 \mathrm{~m} / \mathrm{s}$.

Đối với những δ làm việc gián đoạn, với $v \leqslant 0,5 \mathrm{~m} / \mathrm{s}$, lớt δ ơ bằng gang có thể chịu áp suất p đến $3 \div 4 \mathrm{MPa}$. Tuy nhiên trong các trường hợp quan trọng nên dùng gang giảm ma sát như gang $A C \Psi-1, A C \Psi-2, A C Y-3, A B Y-1, A B Y-2$ v.v... thay cho gang xám thông thường.
 của gang kém đông thanh, làm môn ngơng trục nhiéu hơn. Để giảm mòn cho ngōng trục cần chọn gang có độ răn kém độ rắn của ngỡng trục.

Vạt liệu gốm kim loại

Vật liệu gớm kim loại được chế tạo bằng cách ép và nung bột kim loại với nhiệt độ $850 \div 1100^{\circ} \mathrm{C}$ và áp sữ́t $\sim 700 \mathrm{MPa}$ (khoảng ~ 7000 atmôtphe). Gốm kim loại có nhiêu lỡ rỗng (thể tích 10 chiếm từ 15 đến 35% thể tích toàn bộ). Lót δ làm bàng vật liệu gốm sau khi chế tạo xong, được ngâm dầu ở nhiệt độ $110 \div 120^{\circ} \mathrm{C}$ trong 2 - 3 giờ. Dẩu ngấm vào các lô nhó này vả khi ngōng trục làm việc, dầu sễ tự ưa ra bôi trơn cho lớt δ và ngõng trục. Tuy nhiên, để tảng tuối thọ ồ trượt cūng nên dùng thêm thiết bị bôi trơn ở như dùng bỉnh dầu, nút chứa dầu v.v...

Gớm kim loại đê làm ơ trượt thường là bột đồng thanh - grafit ($9 \div 10 \%$ thiếc, 1 $\div 4 \%$ grafit, cơn lại là đồng), bột sât (có dưới $2 \% \mathrm{Si}, 0,1 \% \mathrm{C}$, còn lại là sất) và bột sất - grafit (1 - 3\% grafit, còn lại là sát). Đối với ớ trượt làm việc nạng (tải trọng va đập, vận tốc cao) gốm nên có độ rỗng* thấp ($15 \div 20 \%$). Đới với ơ chịu tải trọng trung bình, độ rỡng nên lấy $22 \div 28 \%$. Trường họ̣p ơ không dược bôi trơn thêm bằng dầu cung cấp từ bên ngoài vào, gốm nên có dộ hậ lớn và độ rỗng $25 \div 35 \%$. Lót ớ bầng bột sất hoạac sất - grafit có cơ tính cao hơn lớt ở bẳng bột đồng - grafit.

Khi δ trượt lăm việc ơ nhiệt độ $20^{\circ} \mathrm{C}$ tải trọng tīnh và bôi tron đủ (trong 1 phút khoảng 3 giọt cho $1 \mathrm{~cm}^{2}$ bê mạ̣t tiếp xúc), ở trượt sắt - grafit với độ rỗng $22 \div 28 \%$ có thể làm việc binh thường với vận tốc và áp suất sau :

v	m / s	0,5	1	1,5	2	2,5	3	3,5	4
p	MPa	7	6,5	6	5,5	5	3,5	1,8	0,8

Đới với δ có độ rộng $15 \div 20 \%$ áp suất cho phêp cớ thể tăng khoảng $20 \div 30 \%$.

Vật liệu không kim loại

Trong sớ các vật liệu không kim loại làm lôt 6 , có các loại : chất dẻo ; gỗ ; cao su ; grafit.

Đơi với vật liệu khơng kim loại, nước là chất bồi trơn tớt nhất, nước cũng bảo đảm làm nguội tốt. Để tránh gì trục do nước gây nên, nên tráng hoạ̣c bọc ngōng trục bằng thép không gi.

Sở dĩ vật liệu không kim loại được dùng đê làm lớt 8 là vì chúng có các ưu điêm sau : chống dính ; chạy mòn tớt ; bụi mải có độ rấn thấp ; bôi trơn tốt bằng nước hoặc các chất lỏng khác, điêu này có ý nghỉa rất lớn đới với ơ trong các máy thủy lực, máy thực phẩm v.v...

Nhược điểm chủ yếu của vật liệu không kim loại là dẫn nhiệt kém.
Chất dẻo. Chất dẻo được dùng nhiêu nhất để lảm ơ trượt là linôfôn, têctôlit, nhựa pôliamit v.v...

- Quy tắc gọi đọ rông là tỳ số giûa thẻ tich các lỗ rổng với thè tích toàn bô.

Chất dẻo có hệ sơ ma sát thấp, độ bên mòn cao (gấp $5 \div 6$ lần đồng thanh) nhưng hệ số dãn nhiệt thã́p (nhỏ hơn khoảng $300 \div 500$ lẫn so với kim loại).

Gơ. Gỗ làm ơ trượt gôm các loại gô rán như gô nghién, gơ hòe, gó lim v. v... Ố được chê tạo từ gố phiến hoạc gơ dán rời ép. Gố cơ hệ sơ ma sát lớn và tính dẫn nhiệt kém. Ổ trượt gỗ cần được bôi trơn và làm nguội bẳng nước chảy.

Cao su. Cao su được dùng làm ơ trự̂t trong các máy bơm, tuabin nước và trong các cơ cấu khác, có đầy đủ nước đê bồi trơn. Ổ trượt làm bàng cao su có thê làm việc bình thường khi trục láp không được chính xác lám : có tác dụng giảm chắn tốt ; í bị mải mòn ngay cả khi nước bôi trơn khá bẩn. Để làm nguội được tốt và có lới thoát cho các bụi mài, cần làm các rãnh dọc ổ. Cao su dẳn nhiệt kém, nên cần phải làm nguội bà̀ng nước chảy liên tục.

Grafit. Ổ trượt grafit được chê tạo bà̀ng cách ép grafit với áp suất cao và nung ở nhiệt độ $700^{\circ} \mathrm{C}$. Ố trượt grafit có hệ sớ ma sát khá thấp $(0,04 \div 0,05)$, giữ được tính giảm ma sát trong phạm vi nhiệt độ rợng (từ -200 đến $1000^{\circ} \mathrm{C}$) và cơ độ dẫn nhiệt và tính chớng gi cao. Vì vậy ó trự̛̣t grafit được dùng khi khó hoặc không có điêu kiện bôi tron hoạc δ ô phải làm việc ơ nhiệt độ thắp hoạc cao quá. Nhược điểm của ó trượt grafit là dòn, độ bển mòn tương đới thấp và chỉ chịu được áp suất nhỏ (không quá $1,5 \mathrm{MPa}$). Đê tăng thêm khả nảng tải có thể tẩm chì hoặc babit cho lớt 6 grafit.

16.5. TÍNH Ổ TRƯƠT

16.5.1. Các dạng hỏng và chỉ tiêu tính toán oí trượ

Trong ó trượt có thẻ xảy ra các dạng hỏng sau :
Mòn : Lớt ổ và ngỡng trục bị mòn khi trong ố không hinh thành được lớp dầu bôi trơn, ngăn cách các bế mật làm việc. Đới với các 6 được tính toán đảm bảo bôi trôn ma sát ướt, mòn cūng xảy ra khi đóng máy và mở máy, vì lúc này vấn tớc chưa đủ đề tạo thành lớp bôi trơn thủy động. Né̛u trong dầu có lẩn nhiêu bụi mài, lớt ở và ngōng trục càng bi mòn nhanh.

Dính. Hiện tượng dính xảy ra thường do áp suât và nhiệt độ cục bộ trong δ quá lớn, lớp dầu bôi trơn không hình thành được khiến ngõng trục và lớ δ o trực tiếp tiếp xúc với nhau.

Môi rớ. Lớp bê mặt lớt ổ khi chịu tải trọng mạch động lớn có thê hỏng vì mơi rỡ : lớt ớ trong các cơ cá̛u pittông, các máy chịu va đập và rung động v.v...

Ngoài ra, đới với các ổ cơ khe hở nhỏ, biến dạng nhiệ có thể gây kẹt ngõng trục và làm hông 6 .

Để tránh các dạng hỏng kê trên, tớt nhắt là cho ơ trượt làm việc với chê độ bôi trơn ma sát uớt. Vi vậy tinh toán bôi trơn ma sát ướt là tính toán co bản đối với δ trượt.
 với chẹ độ ma sát ướt mà nhiếu khi δ trượt phải làm vię̣c với chê độ ma sát nửa ướt hoạ̣c nửa khô (ngay cả đơi với 6 trự̛̣t đự̛̣ bôi trơn ma sát ướt, khi mở máy hoạc dừng máy vẫn tạm thời bị ma sát nửa ươt). Do đó trong thực té còn dùng phương pháp tính quy ước 6 trượt theo áp suất [p] cho phép và tích só giữa áp suất với vận tốc [pv] cho phép 6 trượt cớ thể làm việc tương đơi lâu khi bị ma sát nửa ưát (hoạ̣c nửa khô).

Khi thiết ké ớ trượt, thường theo kêt cấu trục hoặc theo kinh nghiệm chọn trưóc đường kính d và chiếu dải của ở, vật liệu lớt δ, loại dâu bời trơn, khe hờ trong δ và kiểu lấp, độ nhám bé mặt ngōng trục và lớt δ. Sau đớ tiến hành tính toán kiểm
nghiệm ổ theo phương pháp quy ước và theo điếu kiện đảm bảo bôi tron ma sât ướt (nếu có yêu cầu).

16.5.2. Tính toán quy ước σ trượt

Tính theo áp suát cho phép
Khi ngõng trục và lớt ở trực tiếp tiếp xúc nhau, trị số áp suất thực sinh ra giữa các bê mặt tiếp xúc dược giải theo bài toán đản hôii vê nén của hai hình trụ tiếp xúc trong, có bán kính gần bằng nhau. Tính toán như vậy rất phức tạ̣ (đới với ổ trự̂t không dùng được cong thức Héc). Để được đơn giản, thường quy ước tính áp suất theo công thức

$$
\mathrm{p}=\frac{\mathrm{F}_{\mathrm{r}}}{\mathrm{dl}}
$$

trong đó : F_{r} - tải trọng hướng tâm trong ồ trượt đỡ, N ; d và l - đường kinh và chiếu dài δ, mm;

Áp suất sinh ra trong ơ không được vượt quá trị số cho phép. Ta có điếu kiện

$$
\begin{equation*}
\mathrm{p}=\frac{\mathrm{F}_{\mathrm{r}}}{\mathrm{dl}} \leqslant[\mathrm{p}], \mathrm{MPa} \tag{16-13}
\end{equation*}
$$

Trị sơ áp suất cho phép [p] của một số loại vật liệu lót 8 cho trong bảng 16.3 . Vi đường kính ngõng trục, cūng là đường kính ỡ, đã biết trức khi thiết ké trục, nên công thực (16-13) thường dùng dể kiểm nghiệm.

Tuy nhiên, nếu định trước tì số $\frac{l}{d}=\xi$, do đó $1=\xi$.d, có thể tìm được đường kính d

$$
\begin{equation*}
d \geqslant \sqrt{\frac{\mathrm{~F}_{\mathrm{r}}}{\xi[\mathrm{p}]}}, \mathrm{mm} \tag{16-14}
\end{equation*}
$$

Bảng 16.3
Cac trị só [p], [v] và [pv] của một só loại vạt liệu lôt ó

Vật liệu	$\left[_{\mathrm{MP}}{ }_{\mathrm{M}}\right.$	$[\mathrm{v}]$ m / s	$\begin{gathered} {[p v]} \\ \mathrm{MPa} \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \end{gathered}$	Vột liệu	$\begin{aligned} & {[\mathrm{p}]} \\ & \mathrm{MPa} \end{aligned}$. $\mathrm{m} / \mathrm{l} / \mathrm{s}$	$\begin{gathered} {[\mathrm{pv}]} \\ \text { MPa } \cdot \frac{\mathrm{m}}{\mathrm{~s}} \end{gathered}$
Babit B83 và 889 D16 L6 EH BK	$\begin{aligned} & 25 \\ & 15 \\ & 5 \\ & 20 \\ & 15 \end{aligned}$	$\begin{gathered} 60 \\ 12 \\ 6 \\ 15 \\ 15 \end{gathered}$	$\begin{aligned} & 20 \\ & 10 \\ & 5 \\ & 15 \\ & 6 \end{aligned}$	Hơp kim kêm ЦАМ 10-5 LАМ 10 - 1,5	12	10	12
Dờng thanin EpO Φ 10-1 БрОЦС 5-5-5 БрОЦС 6-6-3 БрОLС 4-4-17 Бр АЖ 9-4 Бр АЖМц 10-3-15 БpC 30	15 8 5 10 15 20 20	$\begin{gathered} 10 \\ 3 \\ 3 \\ 4 \\ 4 \\ 4 \\ 8 \\ 12 \end{gathered}$	15 12 10 10 12 20 20	Đồng thau ЛM OC 58-2-2-2 va ЛА ЖМ Ц52-5-2-1 ЛКС 80-3-3	10 12	1 2	10 10
Hop kim nhôm ACM $4-0.5$	20	10	- 20	$\begin{gathered} \text { Gang xám } \\ \text { ACY-1 } \\ \text { ACY - } 2 \\ A B Y-1 \text { và } A B Y-2 \end{gathered}$	$\begin{gathered} 0,05 \\ 9 \\ 0,1 \\ 6 \\ 0,5 \\ 12 \end{gathered}$	$\begin{gathered} 2 \\ 0,2 \\ 3 \\ 0,75 \\ 5 \\ 1 \\ \hline \end{gathered}$	$\begin{aligned} & 0,1 \\ & 1,8 \\ & 0,3 \\ & 4,5 \\ & 2,5 \\ & 12 \end{aligned}$

[^2]Tinh theo tích só giũa áp suât với vạn tớc truọt
Tích số pv giữa áp suất với vận tớc trượt một phấn nào đạac trưng cho sự sinh nhiệt trong ố (nếu coi hệ só ma sát không đới) và mài mòn.

Từ điêu kiện

$$
p v \leqslant[p v]
$$

với áp suất $\mathrm{p}=\frac{\mathrm{F}_{\mathrm{r}}}{l \mathrm{~d}}$ và vận tốc trượt chính là vận tớc vòng của ngōng trục trong ơ trượt dơ, $\mathrm{v}=\frac{\pi \mathrm{dn}}{60 \cdot 1000}$ ta có :

$$
\begin{equation*}
\frac{\mathrm{F}_{\mathrm{r}} \mathrm{n}}{19100 \mathrm{l}} \leqslant[\mathrm{pv}], \frac{\mathrm{N}}{\mathrm{~mm}^{2}} \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \tag{16-15}
\end{equation*}
$$

trong đó n - số vòng quay trong 1 phút của ngõng trục.
Trị số [pv] của một số loại vật liệu lót ở trong bảng 16.3.
Dới với ơ trựt chặn (hình 16.1 b) cách tính toán cūng tương tự như trên :

$$
p=\frac{F_{a}}{A} \leqslant[p] ; p v \leqslant[p v]
$$

trong đó : F_{a} - tả̉i trọng dọc trục tác dụng lên σ; A - diện tich be mật tựa của ngông trục ; v - vận tớc trung bỉnh.

16.5.3. Tính ổ trượt dớ bôi trơn ma sát ướt"

Như đã trình bày ở trên, ờ trượt làm việc trong chê độ ma sát ướt khi chiếu dày lớp dầu ngãn cách ngōng trục và lớt δ lớn hơn tỡng đô cao trung binh của các mấp mô bê mặt ngõng trục và bê mật lớt ờ. Vậy đé đảm bảo cho ơ làm việc với ché độ ma sát ướt, phải tinh toán ô sao cho thỏa măn điêu kiẹn

$$
\begin{equation*}
h_{\min } \geqslant k\left(R_{z 1}+R_{z 2}\right) \tag{16-16}
\end{equation*}
$$

trong đó : $\mathrm{h}_{\min }$ - chiếu dảy nhỏ nhăt của lớp dấu trong δ;
k - hệ sỡ xét đ̛̣̂n ânh hường của chế tạo và lập ghép không chính xác, biên dạng đân hời của trục v.v... thương lấy $k \approx 1$;
$R_{z 1}$ và $R_{z 2}$ - độ cao trủng bình của các máp mô bê mặt ngõng trục và bê mặt lót 6 .
Vói trị sô tải trọng R, đường kính d của σ và so vòng quay n của trục dã biết trước, sau khi chọn chiêu dài 1 , độ hơ tương đơi ψ của 6 , độ nhớt μ của dầu bôi trơn và độ nhắn be mặt ngơng trục và lớt ớ, cần tính $h_{\text {min }}$ và kiếm nghiệm điêu kiện (16-16).

De̛ xác định $h_{\text {min }}$ trước hết ta phải tính hệ so khà nång tải $\phi^{\dot{N}}=\mathrm{p} \psi^{2} /(\mu \omega)$. [công thức (16-10)], rới theo báng 16.1 tra ra trị s ô χ. Khi đả biét χ ta tim được $\mathrm{h}_{\mathrm{min}}$ theo cong thức :

$$
\begin{equation*}
\mathrm{h}_{\min }=\frac{\delta}{2}(1-\chi)=\psi \frac{\mathrm{d}}{2}(1-\chi) \tag{16-17}
\end{equation*}
$$

[^3]Qua công thức (16-10) có thể thấy rà̀ng độ hở tương đối ψ có ảnh hưởng lớn đến trị số áp suất mà ổ có thế chịu được, nghỉa là ảnh hưởng lớn đến khả năng tải của ổ. ψ càng nhỏ thì p càng lớn, nhưng ổ đòi hỏi chế tạo và lắp ghép chính xác cao, trục phải cứng.

Có thể lấy ψ theo các trị số sau :

$$
\begin{aligned}
& \text { khi d }<100 \mathrm{~mm}, \psi=0,003 \div 0,001 ; \\
& \text { khi } d=100 \div 500 \mathrm{~mm}, \psi=0,002 \div 0,001 ; \\
& \text { khi } d=500 \div 1000 \mathrm{~mm} ; \psi=0,0015 \div 0,0003 ;
\end{aligned}
$$

hoặc tính theo oông thức kinh nghiệm $\psi=0,8.10^{-3} \mathrm{v} 0,25, \mathrm{v}-$ vận tốc vòng của ngõng trục, m / s.

16.5.4. Tính toán nhiệt

Trong quá trình làm việc, do ma sát nên ổ bị nóng lên. Nếu nhiệt độ quá cao, độ nhớt của dầu bị giảm nhiếu, ảnh hưởng lớn đến khả năng tải của ở. Mục đích của tính toán nhiệt là xác định nhiệt độ của ó trượt khi làm việc, qua đó có thể kiểm tra được trị số độ nhớt của đầu xem chọn đã thích hợp hay chưa. Mặt khác nếu nhiệt sinh ra quá nhiếu phải tìm biện pháp làm nguội ớ.

Tính toán nhiệt dựa trên nguyên lí cân bằng nhiệt lượng sinh ra và nhiệt lượng thoát đi :

$$
\begin{equation*}
\Omega=\Omega_{1}+\Omega_{2} \tag{16-18}
\end{equation*}
$$

trong đó : Ω - nhiệt lượng sinh ra trong một đơn vị thời gian ;
Ω_{1} và Ω_{2} - nhiệt lượng thoát theo dầu và nhiệt lượng thoát qua thân ô và trục ra môi trường xung quanh trong một đơn vị thời gian.
Nhiệt lượng (kW) sinh ra trong ồ trong 1 giây

$$
\begin{equation*}
\Omega=F_{r} v f / 1000 \tag{16-19}
\end{equation*}
$$

trong đó : F_{r} - lực tác dụng vào ở, $\mathrm{N} ; \mathrm{v}-\mathrm{vận} \mathrm{tốc} \mathrm{vòng} \mathrm{~m} / ,\mathrm{s} ; \mathbf{f}-\mathrm{hệ} \mathrm{số} \mathrm{ma} \mathrm{sát} \mathrm{tra}$ theo tỷ số f / ψ qua đồ thị trên hình 16.14 (ψ - độ hở tương đới).

Hinh 16.14

Hinh 16.15

Nhiệt lượng (kW) thoát theo dầu chảy qua δ trong 1 giây

$$
\begin{equation*}
\Omega_{1}=\mathrm{C} \cdot \gamma \cdot \mathrm{Q} \cdot \Delta \mathrm{t} \tag{16-20}
\end{equation*}
$$

trong đo : $\mathrm{C} \approx 1,7 \div 2,1$ - nhiệ̀t dung riêng của dầu, $\mathrm{kJ} / \mathrm{kg}^{\circ} \mathrm{C}$;
$\gamma \approx 850 \div 900-\mathrm{kh}$ ới lự̛̣ng riêng của dầu, $\mathrm{kg} / \mathrm{m}^{3}$;
$\Delta t=t_{\text {ra }}-t_{\text {vào }}$ hiệu nhiệt độ dấu ra và dầu vào ;
Q - lưu lượng dầu cháy qua $\delta, \mathrm{m}^{3} / \mathrm{s}$, có thể qua đồ thị trên hình 16.15 (theo trị só độ hở tương đối χ và tỷ sớ 1 tìm được $Q / \psi \omega l^{2}$) rối tính ra Q, chú ý là 1 và d tính bàng m).

Nhiệt lượng thoát qua thân δ và trục trong 1 giây

$$
\begin{equation*}
\Omega_{2}=k_{t} \cdot \pi \cdot d \cdot 1 \cdot \Delta t \tag{16-21}
\end{equation*}
$$

trong dó : $\mathrm{k}_{\mathrm{t}} \approx 0,04 \div 0,08-\mathrm{hẹ̣}$ só tỏa nhiệt qua thân δ ó và trục, $\mathrm{kW} / \mathrm{m}^{2} .{ }^{\circ} \mathrm{C} ; \mathrm{d}$ và 1 - đường kính và chiếu dài $6, \mathrm{~m}$.

Thay các giá trị Ω, Ω_{1} và Ω_{2} vào phương trình cân bằng nhiệt (16-18), tìm được

$$
\begin{equation*}
\Delta t=t_{r a}-t_{\text {vào }}=\frac{\mathrm{F}_{\mathrm{r}} \mathrm{vf}}{1000\left(\mathrm{C}_{\gamma} \mathrm{Q}+\mathrm{k}_{\mathrm{l}} \tau \mathrm{dl}\right)} \tag{16-22}
\end{equation*}
$$

Khi chọn độ nhớt μ của dầu, phải giả thiết trước nhiệt độ lảm việc t của $\begin{gathered}\text { ơ . Nhiệt }\end{gathered}$ độ t là nhiệt độ trung bình :

$$
\begin{equation*}
\mathrm{t}=\frac{\mathrm{t}_{\text {vào }}+\mathrm{t}_{\mathrm{ra}}}{2}=\mathrm{t}_{\text {vào }}+\frac{\Delta \mathrm{t}}{2} \tag{16-23}
\end{equation*}
$$

Nhiệt độ dầu ở cửa ra :

$$
\begin{equation*}
\mathrm{t}_{\mathrm{ra}}=\mathrm{t}_{\mathrm{vào} \mathrm{o}}+\Delta \mathrm{t} \tag{16-24}
\end{equation*}
$$

Thông thường $t_{\text {vào }}=35 \div 45^{\circ} \mathrm{C}$ và t_{ra} khoảng $80 \div 100^{\circ} \mathrm{C}$ tùy theo loại dâuu.
Nếu nhiệt độ trung bình tính đự̛̣ theo cơng thức (16-23) chênh lệch nhiêu so với nhiệt độ t chọn trước, cần phải giả thié̛t lại trị số t , định lại μ và tính lại.

16.6. TRİNH TƯ TÍNH TOÁN δ TRƯƠT BÔI TRON MA SÁT UÓT. THÍ DỤ

16.6.1. Trình tự tính toán 6 trự̛̣ bôi trơn ma sát ướt

Đế tính toán δ trượt, thường cho trước : tải trọng F_{r} tác dụng lên δ, só vòng quay trong 1 phút n và đường kính d của ngờng trục, nhiệt đọ dầu ở cửa vào (nhiệt đọ của moi trừng xung quanh).

Cân xác định chiếu dài l của 6 , đọ hở δ, loại dấu bôi trơn (độ nhớt) kiểm tra vế nhiệt*
C6 thê tinh toan of trự̂t bôi tron ma sát ướt theo trinh tự sau :

1. Định tỷ sơ $\frac{l}{d}$, thông thường lây $\frac{l}{d}=0,6 \div 1$. Tính chiêu dài 1 của 6 và kiểm tra áp suất quy ước [công thức (16-13)].
2. Chọn đọ hờ tương đới ψ, tính $\delta=\psi$.d. Chọn kiêu láp và định trị só khe hở trung bình δ_{tb} chọn độ nhám bé mặt.
[^4]Đơi vỡi những trục cơ đường kinh $\mathrm{d} \leqslant 250 \mathrm{~mm}$, khi định ψ nên chọn theo các kiểu láp lỏng cho trong tiêu chuân, như $\frac{\mathrm{H} 7}{\mathrm{e} 8}, \frac{\mathrm{H} 7}{\mathrm{f} 7}, \frac{\mathrm{H} 8}{\mathrm{e} 8}, \frac{\mathrm{H} 8}{\mathrm{f} 7}, \frac{\mathrm{H} 8}{\mathrm{f} 8}, \frac{\mathrm{H} 8}{\mathrm{~d} 9}, \frac{\mathrm{H} 8}{\mathrm{e} 9}, \frac{\mathrm{H} 8}{\mathrm{f} 9}, \frac{\mathrm{H} 9}{\mathrm{~d} 9} \ldots$, rơi từ đo tim trị só đọ hơ ψ trung blnh đê tinh toán. Độ nhám (thông sónhám) của các bê mặt được tiện tinh hoạc mải đạt câp độ nhám 7 cũ $\mathrm{R}_{\mathrm{z}}=3,2 \div 6,3, \mu \mathrm{~m}$; nếu cấp độ nhám 8 cũ thil $R_{z}=1,6 \div 3,2 \mu \mathrm{~m}$; nêu mài tinh đạt cấp 9 cũ thl $\mathrm{R}_{\mathrm{z}}=0,8 \div 1,6 \mu \mathrm{~m}$.
3. Chọn loại dầu bôi trơn, nhiẹt đọ trung bình t và độ nhớt động lực μ của dầu. Độ nhơt μ có thể tra theo bảng 16.2 tùy theo loại dấu và nhiệt độ t .
4. Tính hệ sơ khả nång tảai Φ của ờ theo cong thức ($16-10$) và theo bảng 16.1 xác định χ. Sau đơ tính toán $h_{\text {min }}$ có lơp dâu boi trơn theo công thức (16-17).
5. Kiểm nghiệm $h_{\text {min }}$ theo cong thức (16-16)

6, Kiểm tra vê nhiệt.

16.6.2. Thi dụ

Tính δ trượ bôi trơn ma sât ưot với các so liệu sau :
$\mathrm{F}_{\mathrm{r}}=20000 \mathrm{~N}, \mathrm{~d}=100 \mathrm{~mm}, \mathrm{n}=1200 \mathrm{vg} / \mathrm{ph}$, vật liệu lót δ° đông thanh $5 \mathrm{pA} Ж 9-4$, nhiẹ̣t đọ của dầu vào (của môi trường xung quanh) là $40^{\circ} \mathrm{C}$.

Gidi. 1. Láy $1 / \mathrm{d}=0,8$, tìm được $1=0,8 \mathrm{~d}=80 \mathrm{~mm}$. Áp suât cho phêp [p] của đồng thanh ВрА $\nVdash 9-4$ là MPa (bảng 16.3). Kiếm nghiẹm áp suất theo công thức (16-13).

$$
\mathrm{p}=\frac{20000}{80 \cdot 100}=2,5 \mathrm{MPA}<[\mathrm{p}]=15 \mathrm{MPa}
$$

2. So bọ chọn đọ hơ tương doi $\psi=0,001$, tifh dượ dọ ho $\delta=\psi . \mathrm{d}=0,1 \mathrm{~mm}=$ $100 \mu \mathrm{~m}$. Chọn kiêu lắp H7/e8, tra trong sở tay vê các kiêu lấp được độ hở nhỏ nhất $\delta_{\text {min }}=72 \mu \mathrm{~m}$, đô hở 10 n nhat $\delta_{\text {max }}=161 \mu \mathrm{~m}$. Đọ hơ trung bình

$$
\delta_{\mathrm{tb}}=\frac{\delta_{\min }+\delta_{\max }}{2}=\frac{72+161}{2}=116 \mu \mathrm{~m}
$$

Theo $\delta_{t b}$ đinh lại ψ

$$
\psi=\frac{\delta_{\mathrm{tb}}}{\mathrm{~d}}=\frac{0,116}{100} \simeq 0,0012
$$

3. Chọn loại dâu công nghiẹp 30 và giáa thiết nhiệt độ trung binh $t=50^{\circ} \mathrm{C}$. Theo bảng 16.2 , tim đượ $\mu=26 \mathrm{cP}=0,026 \mathrm{Ns} / \mathrm{m}^{2}$.
4. Tính hệ so khà năng tải Φ của δ [công thức (16-10)]

$$
\Phi=\frac{p \psi^{2}}{\mu \cdot \omega}=\frac{2,5 \cdot 10^{6} \cdot(0,0012)^{2}}{0,026 \cdot 105}=1,32
$$

trong đơ : $\mathrm{p}=2,5 \mathrm{~N} / \mathrm{mm}^{2}=2,5 \cdot 10^{6} \mathrm{~N} / \mathrm{m}^{2} \cdot 10^{6} \mathrm{~N} / \mathrm{m}^{2}$ và $\omega=\frac{2 \pi \mathrm{n}}{60}=\frac{2 \cdot 3,14 \cdot 1200}{60}=1051 / \mathrm{s}$. Theo bång 16.1 , với $\Phi=1,32$ và $1 / \mathrm{d}=0,8 \mathrm{tim}$ được $\xi \simeq 0,67$. Theo công thức (16-17) tinh $h_{\text {min }}$

$$
h_{\min }=\frac{116}{2}(1-0,67)=19 \mu \mathrm{~m}
$$

5. Kiểm nghiệm $\mathrm{h}_{\min }$. Giả sử ngỡng trục được gia công có thông só nhám $\mathrm{R}_{\mathrm{Z}_{\mathrm{i}}}=3,4 \mu \mathrm{~m}$ và lót of co $\mathrm{R}_{\mathrm{Z}_{2}}=3,2 \mu \mathrm{~m}$:

$$
\frac{h_{\min }}{\mathrm{R}_{\mathrm{z}_{1}}+\mathrm{R}_{\mathrm{z}_{2}}}=\frac{19}{6,4}=2,97>\mathrm{k}=2
$$

6. Kiếm tra vê nhiẹt. Theo đô thị trên hinh 16.14 vơi $\chi=0,67$ và $\frac{l}{d}=0,8$, tim đực $\mathrm{f} / \psi \simeq 2$, do đó $\mathrm{f}=0,0012.2=0,0024$.

Theo đô thị hình 16.15 tim được $Q / \psi \omega \operatorname{ld}^{2}=0,084$ hoạ̣c

$$
\mathrm{Q}=0,084 \cdot 0,0012 \cdot 105 \cdot 0,08 \cdot 0,1^{2}=8,4 \cdot 10^{-6} \frac{\mathrm{~m}^{3}}{\mathrm{~s}}
$$

Láy $\mathrm{C}=2 \mathrm{~kJ} / \mathrm{kg}^{\circ} \mathrm{C}, \gamma=900 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{k}_{\mathrm{t}}=0,06 \mathrm{~kW} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$,

$$
\mathrm{v}=\omega \frac{\mathrm{d}}{2}=105 \frac{0,1}{2}=5,25 \mathrm{~m} / \mathrm{s}
$$

Theo công thức (16-22) tìm được

$$
\Delta t=\frac{20000 \cdot 5,25 \cdot 0,0024}{1000\left(2 \cdot 900 \cdot 8,4 \cdot 10^{-6}+0,06 \cdot 3,14 \cdot 0,1 \cdot 0,08\right)} \simeq 15^{\circ} \mathrm{C}
$$

Nhiẹt độ trung binh của dầu [công thûc (16-23)]

$$
\mathrm{t}=40^{\circ}+\frac{15^{\circ}}{2}=47,5^{\circ} \mathrm{C}
$$

Nhiệt độ trung bình của dều hơi thấp hon nhiẹt độ được giả thiết đế chọn độ nhờt μ, 6 trượt làm việc thơa mān điêu kiện bôi trơn ma sát ướt.

Nhiệt độ dầu ra [công thức (16-24)]

$$
\mathrm{t}_{\mathrm{ra}}=40^{\circ}+15^{\circ}=55^{\circ} \mathrm{C}
$$

Nhiẹt độ của dấu nà̀m trong phạm vi cho phép.

Chưong 17

Ó LÅN

17.1. KHÁI NIẸM CHUNG

17.1.1. Cấu tạo và phan loại 6 lân

Trong δ lăn, tải trọng từ trục trưóc khi truyên đến goi trục phải qua các con lăn (bi hoậc đũa). Nhờ có con lán cho nên ma sát sinh ra trong ơ là ma sát lăn.

Ổ lăn thường gờm bơn bộ phận (hình 17.1) : vòng ngoài 1 , vòng trong 2 , con lăn 3 , giữa các con lăn có vòng cách 4 .

Vơng trong và vòng ngoài thường có rảnh, vòng trong láp với ngõng trục, vòng ngoài láp với gới trục (vỏ máy, thân máy). Thường chi vòng trong cùng quay với trục,
còn vòng ngoài đứng yên, nhựng cũng cơ khi vòng ngoài cùng quay với gói trục còn vòng trong đứng yên cùng với trục (như ớ lăn của bánh ơtô).

Hinh 17.1

Hinh 17.2

Con lăn có thể là bi hoạ̣c đũa, lăn trên rãnh lăn. Rãnh có tác dụng giảm bớt ứng suất tiếp xúc của bi, hạn chế bi di động dọc trục và do đó ón có thể chịu dược một it tải trọng dọc trục. Để tránh ma sát trượt, bán kính cong của ränh phải lớn hơn bán kính của bi.

Vông cách giū cho hai con lăn kế nhau cách nhau một khoàng nhất định, nếu không, chúng có thể tiếp xúc nhau (hình 17.2) và ở điểm tiếp xúc chuyển động của hai con lăn ngược chiéu nhau, do đó vận tớc ma sát gấp hai lần vận tớc vòng của con lản sê làm cho con lăn bị mòn rất nhanh, mật khác δ làm việc sẽ ôn nhiếu. Để giám bớt mài mòn con lăn, vòng cách nên làm bằng vật liệu tương đói mém.

Thông thường con lăn có các loại sau : bi (hình 17.3a), đũa trụ ngán (hình 17.3 b), đūa trụ dài (hỉnh 17.3c), đũa con (hình 17.3d), đũa hình trống đó́i xứng (hình 17.3 d) hoặc không đơi xứng (hình 17.3e), đũa kim (hình 17.3g), đūa xoắn (hình 17.3h).

b)

c)

g)
h)

Hinh 17.3
Theo hình dạng con lăn, có thể chia δ thành hai loại : δ bi và ón dũa. Ổ kim là biến the̛ của ơ đũa trụ dài.

Theo khả năng chịu lực ở lăn được chia ra :

- Ó a \tilde{a} : chỉ chịu lực hướng tam mà không chịu hoạc chi chịu được một phần nhỏ lực dọc trục (hình $17.4 \mathrm{a}, \mathrm{b}$ và $17.5 \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{e}$).
- O dõ chạn : chịu được cả lực hướng tâm lẫn lực dọc trục (hình $17.4 \mathrm{c}, \mathrm{d}$ và 17.5 d);
- Ó̉ chặn dõ : chịu lực dọc trục đông thò̀i chịu được một it lực hướng tâm (hình 17.4d) ;
- Ô chặn : chỉ chịu lực dọc trục mà không chịu được lực hướng tâm (hình 17.4 e và 17.5 d).

Hinh 17.5
Khi đường tâm của gối trục và đường tâm của trục lệch nhau một góc nào đó, dùng ổ lăn tự lựa có thể đảm bảo cho trục và ổ làm việc bình thường. Ổ lăn không tự lựa chỉ dùng khi độ lệch giữa trục và gối trục rất nhỏ. Ở ổ lăn tự lựa có mặt trong của vòng ngoài là mặt lõm hình cầu, tâm hình cầu trùng với điểm giữa chiếu rộng ổ và nà̀m trên đường tâm của ổ, do đó ổ lăn tự lựa còn được gọi là ổ lăn lòng cầu (hình 17.4 b và 17.5 b).

Theo số dãy con lăn trong ổ có thể chia ra ổ một dãy, hai dãy, bốn dãy v.v. .. Riêng ổ đũa trụ dài chỉ có một dãy con lăn.

Theo cỡ đường kính ngoài của ổ lăn (với cùng đường kính trong) chia ra các loại : ổ lăn cỡ đặc biệt nhẹ, rất nhẹ, nhẹ, trung bình và nặng. Theo cỡ chiểu rộng, ổ lăn được chia ra : ổ hẹp, ổ bình thường, ổ rộng và ổ rất rộng. Trên hình 17.6 trình bày sơ đồ kích thước các cỡ ổ : a) đặc biệt nhẹ ; b) nhẹ ; c) nhẹ rộng ; d) trung bình ; đ) trung bình rộng ; e) nặng. Thường dùng ổ bình thường cỡ nhẹ và cỡ trung bình.

Hình 17.6

Hình 17.7

Các ồ thuộc các loại khác nhau và cỡ khác nhau thỉ khả nảng tải và khả năng làm việc với vận tớc cao cũng khác nhau. Trên sơ dồ hình 17.7 cho thấy so sánh vé khới lượng m (1), khả nãng tải động C (2) và số vòng quay tới hạn n (3) của các cõ ố bi và σ đūa đường kính $d=80 \mathrm{~mm}$.

Ở cõ nạ̃ng có kích thước khuôn khở lớn hơn, khả năng lảm việc vợi vận tốc cao kém hơn nhựng cơ khả nãng tái cao hơn so vấi các cỡ khác.

Nôi chung ờ lăn đã được tiêu chuấn hơa, tuy nhiên, trong những trường hợp riêng người ta cũng chê tạo các δ lăn co cấu tạo đặc biệt, ví dụ như 6 có bi tiép xúc 4 điểm với các rẫnh, ơ được che kín đạ̣c biệt, ớ có tính chống ăn mòn v.v...

17.1.2. Ưu, nhưqe điêm của ơ lăn

So sánh với ơ trượt, ơ lăn có các uu điểm sau :

- Hề sơ ma sát nhó (vào khoảng $0,0012 \div 0,0035$ đới với 6 bi và $0,002 \div 0,006$ đới với ơ đũa), mơmen cân sinh ra khi mở máy cūng it hơn so với ó trượt ; do đó dùng 6 lăn hiệu suất của máy tăng lên và nhiệt sinh ra tương đơi it. Ngoài ra hệ só ma sát tưong đơi ởn định (it chịu ảnh hưởng của vận tóc) cho nên có thể dùng ờ lăn làm việc với vận tớc rất thấp.
- Chăm sớc và bôi trơn đơn giản, ft tớn vật liệu bôi trơn, có thể dùng mō bôi tronn.
- Kich thước chiêu rộng ở lăn nhỏ hơn chiêu rộng 6 trượt có cùng đường kinh ngōng trục.
- Mức độ tiêu chuẩn hơa và tính láp lẫn cao, do đó thay thế thuận tiện, giá thành chê tạo tương đới tháp khi sản xuât loạt lớn.

Tuy nhiên, ó lãn có một só nhược điếm sau :

- Kich thước hướng kính lớn.
- Láp ghép tương đơi khó khăn.
- Làm việc có nhiêu tiêng ôn, khà năng giảm chấn kém.
- Lực quán tính tác dụng lên các con lăn khá lớn khi làm việc vói vận tốc cao.
- Giá thành tương đới cao nếu sản xuất vấi só lượng ft.

Ổ lăn được dùng rất phở biên trong nhiêu loại máy : máy cắt kim loại, máy điện, ôto, máy bay, máy kéo, máy nồng nghiệp, cần trục, máy xây dựng, máy mỏ, trong các hợp giảm tớc, trong các cơ cấu v.v...

17.1.3. Dệ chính xác ché tạo và vạt liệu 6 lăn

Dọ chinh xác của ơ lản được đạ̣c trưng bời câp chính xác kích thước (dung sai chê
 mạt bên v.v...)

Ổ lan (Lien Xo cũ) co năm cáp chính xác, ki hiệu $0,6,5,4$, và 2 , theo thứ tự tăng dân chính xác. Ô lăn cấp chính xác 0 đự̛̣c dùng khi không có các yêu cấu dạ̣c biệt vế các chỉ tiêu chính xác khi quay. So với ở lăn cấp chính xác 0 , δ lăn cấp chính xác 2 có dung sai vê độ đảo hướng kinh và độ đảo mặt bên it hơn khoảng 5 lẩn và giá thành thì gáp 10 lần. Ổ lăn cáp chính xác 0 được dùng rộng rãi trong nhiếu loại máy như : ôtô, máy kéo, máy nông nghiệp, máy xây dựng:..
có cáp chính xác cao hơn chi dùng trong các trục có yêu cấu chính xác cao khi quay, như trục chính máy cât kim loại, trục trong các dụng cụ do v . v ...

Vạt liẹu dùng đễ chế tạo vòng trong, vòng ngoài và con lăn thường là thêp cơrôm có hàm lượng cácbon khoảng $1 \div 1,1 \%$ như thép ШX15, ШX15 CГ ($15 \% \mathrm{Cr}$) hoạ̣c ШX $20 \mathrm{C} \mathrm{\Gamma}(20 \% \mathrm{Cr})$. Người ta còn dùng thép họp kim ft cacbon như thép $18 \mathrm{X} \mathrm{\Gamma T}$, 20 X 2 H 4 A v.v... thấm than và tồi. Dới với những 6 làm việc với nhiệt độ dưới $100^{\circ} \mathrm{C}$ đũa và vòng 6 thường có đọ rấn $60 \div 64 \mathrm{HRC}$, bi có đọ rấn $62 \div 66 \mathrm{HRC}$.

Dơi với những ơ làm việc ở nhiệt độ cao (đên $500^{\circ} \mathrm{C}$) ơ được làm bà̉ng thép chịu nhiệt. Nếu ở làm việc trong môi trường ăn mòn thì dùng thép không gí. Vông cách của ơ được chế tạo bằng vật liệu giảm ma sát như thép it cacbon. Vông cách trong các σ có vận tớc cao được làm bà̀ng téchtôlit, đuara, động thau (latông) và đông thanh (brơng) (các vật liệu được xếp theo thứ tự tăng tốc độ của ở).

17.2. CÁC LOẠI Ó̉ LÃN CHÍNH

Ổ lăn có nhiếu loại và rất nhiêu cō kich thước. Để giảm giá thành sản xuất và đế tiện sử dụng, thay thê, phân lớn các loại ơ lăn thường dùng đêu đã được tiêu chuẩn hơa và được chế tạo tập trung ở các nhà máy chuyên môn. Ơ đây chỉ giới thiệu một sô loại δ chính được dùng nhiếu nhât.

Ó bi dõ mợt dăy (hình 17.4a), chủ yé̛u là để chịu lực hướng tâm, nhưng cũng có thé chịu lực dọc trục bả̀ng 70% khả năng chịu lực hướng tâm không dùng tới (70% hiệu sơ lực hướng tâm cho phép với lực hương tâm thực tế).

Ngoài ra có thể dùng δ bị đõ cơ khe hở giữa bi và rãnh lăn tương đới lớn để chịu đơn thuần lực dọc trục (làm việc với vận tợc cao), thay cho ơ chặn. Ố bi đỡ một dãy có thể làm việc bịnh thường khi trục nghiêng một góc nhỏ, không quá $15^{\prime} \div 20^{\prime}$.

Ưu điểm của ở bi đō một dãy là cáu tạo gọn, có thê chịu được tải trọng tương đới lớn, hệ số ma sát khá nhỏ ($f=0,002$ khi chịu lực hướng tâm : $\mathbf{f}=0,004$ khi chịu lự dọe trục).

Nhược điểm chủ yếu của ở này là chịu tải trọng va đập kém.
Ổ bi đõ một dãy thích hợp với các trục ngán có hai ơ ($\frac{\mathrm{L}}{\mathrm{d}}<10$; L là khoảng cách giữa hai δ trục, d là đường kính truc) như trong các hộp tớc đọ của oto, máy kéo, máy cát kim loại, họ̣p giảm tớc...

Ó bi dỡ lòng cẩu hai dãy (hình 17.4 b) chủ yếu để chịu tải trọng hương tâm nhưng có thể chịu thêm tải trọng dọc trục bàng 20% khả năng chịu lực hương tâm không dùng tới.

Hình 17.8

Ổ cơ thê làm việc bỉnh thường khi trục
nghiêng tới $2^{\circ}+3^{\circ}$ nhờ mạ̣t trong của vòng ngoài là mặt cấu, hệ số ma sát khoảng 0,0015 .

Ô làm việc thích hợp trong các trục truyến chung có nhiếu ó trục, các trục bị uôn nhiếu và trong nhừng trường họp khó bảo đảm láp các ó trục được đồng tâm, ví dụ : trục máy thông gió, máy cưa tròn, máy dệt v.v...

Ó dūa ngân dō mợt dây (hinh 17.5a) chủ yếu để chịu lực hướng tâm. So với $\overline{6}$ bi đõ một dãy cùng kích thước loại ớ này có khả năng chịu lực hướng tấm lớn hơn khoảng 70\%.

Trên hình 17.8 trình bày một số kết cấu của loại 6 này. Ổ như hinh 17.8 a và 17.8 b chỉ có thể chịu lực hướng tâm mà không chịu được lực dọc trục vì không cản được sự di động dọc trục của đũa, ở hình 17.8 a : vòng ngoài có thể tháo rời, ơ hỉnh 17.8 b : vòng trong có thể tháo rà̛i. Ổ hình 17.8 c và 17.8 d có thể chịu được một it lực dọc trục một chiếu. Ổ hình 17.8 đ có thể chịu dược một it lực dọc trục hai chiếu.

Ổ đũa trụ ngân đỗ một dãy có khả năng chịu tải lớn, chịu va đập tốt, nhưng có nhược điểm là một số kiểu ớ không chịu được lực dọc trục, không dùng được đói với các trục bị uốn nhiếu ; ở có yêu cẩu cao vê láp đồng tâm. Hệ só ma sát khoảng 0,003 .

Loại ơ này thường dùng trong hộp giảm tốc, trục chính của máy cắt kim loại v.v...
Ố đüa dõ lòng cãu hai dăy (hình 17.5 b) chủ yếu đề chịu lực hướng tâm. Khả năng chịu lực hướng tâm của loại lực này gắp đôi so với loại ố bị đỗ lòng cầu hai dãy cùng kích thước và có thế chịu lực dọc trục bằng 20 lực hướng tâm không dùng tới.

Mặt trong cưa vòng ngoài là mặt cầu, đũa có hỉnh trớng, nhờ đó trục bị nghiêng đi $2^{\circ} \div 3^{\circ}$ vẩn có thế làm việc được bình thường. Hệ sớ ma sát băng 0,004 .

Loại ổ này thích hợp với những trục bị uốn nhiếu hoạc không đảm bảo láp ghép dược đồng tâm.

Ở kim (hình 17.5 c) là ố có những đũa trụ nhỏ và dài gọi là kim. Só kim nhiếu gấp mấy lần so với số đũa trong các ớ đũa thông thường. Ổ kim không có vòng cách.

Ổ kim chịu được lực hướng tâm rất lấn, kích thước đường kính ngoải nhô, giá tương đối rẻ. Nhược điểm của ở kim là hệ số ma sát tương đới lớn, khoảng 0,008 , không chịu đượ lực dọc trục, tuới thọ thấp.

Ổ kim có thể có đủ vòng trong, vòng ngoài hoạ̃c không có vòng trong, hoạ̣c không có vòng ngoài, kim trực tiếp tiếp xúc với ngõng trục và gói trục ; trong hai trường hợp sau ngơng trục và gới trục phải có độ rắn cao và bế mặt phải được mài nhẫn.

Ổ kim thương được dùng trong trục khuỷu, hộp tốc độ của máy cât kim loại, bơm bánh răng...

Ó dūa tru xoản dơ (hỉnh 17.5 e) gợm những con lăn hình trụ rỗng, bàng băng thép mơng cuớn lại (gọi là đũa trục xoắn), không chịu được lực dọc trục. Nhờ đüa trụ xoắn có tính đàn hời cao nên δ có thế chịu tải trọng va đặp, có thế làm việc bình thường khi độ nghiêng trục tới 30 '. Khả năng chịu tải của loại ớ này thấp hơn loại σ đūa đỡ (có con lăn đạc), hẹ só ma sát khọảng 0,006 .

Loại ở này dùng trong các truyên động công suá̛t thấp, có va đập trung bình như trong hợp tớc độ của máy kéo và trong máy gặt liên hợp...

Ó bi dõ chạn mọt dãy (hỉnh 17.4 c) dùng đê chịu cả lực hướng tam lẳn lực dọc trục. Loại ờ nảy cüng có thể chil chịu lực dọc trục.

Khả năng chịu lực hương tâm của ở này lớn hơn ờ bi đõ một dãy khoảng $30 \div$ 40%. Khả nång chịu lực dọc trục của ở phụ thuộc vào gơc tiếp xúc α giữa bi với vòng ngoài (hình 17.4 c), góc $\alpha=12^{\circ}, 26^{\circ}$ và 36°, góc α càng tãng, khả năng chịu lụ̂e dọc trục của ổ càng tăng nhưng tóc độ giới hạn của ơ giảm.

Để tăng khả năng chịu tải của ơ hoặc để cơ thể chịu lực dọc trục thay đỡi hai chiếu, người ta thường láap hai ô trên một gối trục, trong trường hợp sau phải bó́ trí mặt tỳ của hai ớ quay vê hai phía khác nhau.

Ó dŭa cơn dỡ chận (hình 17.5 d) có thể chịu cả lực hướng tâm lẫn lực dọc trục một chiếu lớn.

Ổ đūa côn đờ chặn được dùng nhiêu trong chế tạo máy vl lấp tháo đơn giản, điếu chinh khe hở và bù lượng mòn thuận tiẹn. Hệ so ma sát tương dơi cao (khi chịu lực hương tam $f \simeq 0,008$, khi chịu lự dọc trục $f \simeq 0,02$).

Để đảm bảo đūa lăn không trượt trong rảnh lăn, các đinh côn của đūa và của bé mặt rānh lăn phải trùng nhau. Góc tiêp xúc $\alpha=10 \div 16^{\circ}$ (bàng $\frac{1}{2}$ gớc đỉnh côn của mặt rānh lản trên vòng ngoài). Đđ̛i vơi những 6 dùng đê chịu lực dọc trục rất lớn, góc α khoảng $25 \div 30^{\circ}$. Góc côn của đũa thường bàng $1,5 \div 2^{\circ}$.

Ỏ có thể chế tạo thảnh mộ dãy hoạc nhiêu dãy ; 6 nhiêu dãy dùng khi lực hương tâm rất lớn (thi dụ trong máy cán thép) và chịu đực lực dọc trục hai chiêu.

Ổ đưa côn đỡ chặn thường được dùng trong các trục lấp bánh rảng côn, bánh răng nghiêng, trong các hộp giàm tớc cong suăt lón v.v...

Ó bi chặn (hình 17.4e) chil chịu được lực dọc trục và làm việc vơi vạn tốc thấp và trung binh ($\mathrm{n}<1000 \div 1500 \mathrm{vg} / \mathrm{ph}$). Khi vận tớc cao $\begin{gathered}\text { ón bị cạ̣n làm việc không tơt (do tác hại }\end{gathered}$ của lực ly tam và mômen con quay).

Ớ bi chặn có kiêu một lơp hoạc hai lớp. Ớ một lớp (hình 17.9 a) có một vòng được láp chạ̣t vào trục, còn vòng kia láp có khe hỏ và δ chi chịu được lực dọc trục một chiêu, Ô hai lớp (hỉnh 17.9b) có vòng giưa láp chạt với trục. Ô chặn được dùng trong gđi đơ móc cân trục, bộ ly hạp, trục vit v.v...

Kỳ hiẹu của 6 lăn (TCVN 3776-83)
Hinh 17.9
Ổ lăn được ký hiệu bầng những só. Hai sơ đẫu tính từ phải sang biêu thị đường kinh trong của 8 . Dơi vơi nhưng δ co dường kinh trong từ 20 đén 495 mm các so này băng $1 / 5$ đường kính trong, nghla là nếu nhân hai sơ này vơi 5 ta được trị so đương kính trong của 6. Đơi vơi những δ ó co đường kinh trong tù̀ 10 đơn 20 mm , ký hiệu như sau :
$\begin{array}{llllll}\text { Đương kính trong của } 8, \mathrm{~mm} & 10 & 12 & 15 & 17\end{array}$
Ký hiệu

00	01	02	03

Sơ thứ ba từ phải sang biéu thị loạt đường kinh δ ($\mathrm{cö}$ kich thứ̛c đường kinh ngoài
 So 9 để chi 6 có đường kinh không tiêu chuấn.

Chữ sơ thứ tư từ phải sang trai biếu thị loại 6 :

$\begin{aligned} & \text { uix so thư tu từ ph } \\ & \text { of bi dã mọt daxy } \end{aligned}$	0
Ớ bi đò lòng câu hai day	1
Ô đūa trụ ngân đō	2
Ở đũa đõ lòng câu hai dãy	3
Ó kim hoặc ơ đūa trụ dài	4
Ơ đũa trụ xoắn đơ	5
Ơ bi đơ chặn	6
Ổ đūa côn	7
Ở bi chặn, 6 bi chặn đỡ	8
Ổ đưa chặn, ồ đũa chặn đō	

Só thứ năm và thứ sáu tự phải sang biểu thị những đặc điếm vê cấu tạo của $\overline{0}$, vi dụ vê góc tiép xúc của bi trong 8 đỡ chặn, có rãnh tựa ở vòng ngoài v.v... (Đới với nhūng kiểu ở không có những đạ̣c điểm vể cấu tạo thỉ không cẩn dùng hai sớ hạng này).

Số thứ bảy biểu thị loạt chiêu rọng ơ (cã̛ chiếu rộng) : 8 - dặc biệt hẹp ; 7 - hẹp ; 1 - bình thường ; 2 - rộng ; 3, 4, 5, 6 - đạc biệt rộng. Tùy theo loạt đường kinh, chữ sơ 0 có thế chil loạt chiểu rộng bỉnh thường, hẹp hoạ̣c rộng.

Trong ký hiệu quy uớc của δ không ghi kiểu $\begin{gathered}\text { o có ki hiệu là só } 0 \text { néu ki hiẹu loạt }\end{gathered}$ chiếu rộng là 0 và dạng kết cấu là 00 . Như vậy trong kí hiệu quy ước của δ ô chi gờm 2 hoặc 3 chữ só.

Ví dụ ờ bi đõ̃ một dãy cơ vòng che loạt đường kính nhe, loạt chiêu rộng bình thường, có đường kinh trong $\mathrm{d}=60 \mathrm{~mm}$ có ki hiệu là ơ 150212 .

17.3. LỰC VÀ ÚNG SUẤT TRONG Ổ LAN

17.3.1. Sự phân bớ lực trên các con lăn

Trong δ dõ lực phân bo không đêu trên các con lăn (hình 17.10). Dưới tác dụng của lực hướng tấm chì có những con lăn nà̀m ơ phía dưới, trong vùng chịu tải choán cung không lớn hơn 180°, là chịu lực. Con lạn chịu lực lớn nhất là con lăn nàm trong mật phảng tác dụng của lực hướng tâm F_{r}.

Bài toán vê phân bơ lực giữa các con lăn là bài toán siêu tĩnh. Các con lăn đớ xứng nhau qua mặt phẳng tác dụng của lực F_{r} chịu tải như nhau. Gọi lực tác dụng lên con lản chịu tảa lớn nhất là $\mathrm{F}_{\text {max }}$ lên các con lăn nằm dưới góc γ so với mặt phả̉ng tác dụng của lực F_{r} (hình 17.10) và F_{1}, lên các con lăn nàm dưới góc 2γ là F_{2} v.v... Dê dann giản, giả thiết rà̀ng các con lăn bơ trí đới xứng đới với mặt phả̉ng tác dụng của lực F_{r}.

Theo điêu kiẹn cân bàng vòng trong, ta có :

$$
\begin{array}{r}
\mathrm{F}_{\mathrm{r}}=\mathrm{F}_{\max }+2 \mathrm{~F}_{1} \cos \gamma+ \\
+2 \mathrm{~F}_{2} \cos 2 \gamma+\ldots+2 \mathrm{~F}_{\mathrm{n}} \cos n \gamma \tag{17-1}
\end{array}
$$

trong đó n - một nửa só con lăn nàm trong vùng chịu tải, $n \leqslant \frac{Z}{4}, Z$ là so con lăn.

Giả thiét vòng trong không bị uơn và 6 không có khe hở hướng tâm. Do tác dụng của lực F_{r} vòng 6 và con

Hinh 17.10
lăn bị biến dạng tại chờ tiép xúc, vòng trong của δ di chuyển theo phương của lực F_{r} một lượng δ_{0}. Biến dạng của con lăn chịu lực $F_{\text {max }}$ là δ_{o} và biến dạng của con lăn chịu lực F_{i} (biên dạng theo phương F_{i}) là $\delta_{\mathrm{i}}(\mathrm{i}=1,2, \ldots \mathrm{n}$). Ta có thế viết một cách gầ đúng

$$
\delta_{i}=\delta_{0} \cos \varphi_{i}, \text { vói } \varphi_{i}=i \gamma, \gamma=\frac{2 \pi}{Z}
$$

Giữa biến dạng δ của con lăn và vòng 6 với lực F có hẹ thức

$$
\delta=\mathrm{cF}^{\mathrm{x}}
$$

trong đó c - hệ sơ tỷ lệ, phụ thuộc bán kinh cong ở diểm tiếp xúc và mỗun đàn hôi của vật liệu; số mũ $x=2 / 3$ đớ với ơ bi (tiếp xúc ban đấu theo điểm) và $x=1$ đói với 6 đưa (tiếp xúc ban đấu theo đường).

Do đó

$$
\begin{align*}
& F_{\max }=\left(\frac{\delta_{o}}{\mathrm{c}}\right)^{1 / \mathrm{x}} \text { và } \\
& \mathrm{F}_{\mathrm{i}}=\left(\frac{\delta_{i}}{\mathrm{c}}\right)^{1 / \mathrm{x}}=\mathrm{F}_{\max }\left(\cos p_{\mathrm{i}}\right)^{1 / x} \tag{17-2}
\end{align*}
$$

Thay các giá trị của F_{i} vào hệ thức (17-1) ta có công thức tính trị so lục $\mathrm{F}_{\text {max }}$ trong δ bi

$$
\begin{equation*}
F_{\max }=\frac{F_{r}}{\left(1+2 \cos ^{5 / 2} \gamma+2 \cos ^{5 / 2} 2 \gamma+\ldots+2 \cos ^{5 / 2} n y\right)} \tag{17-3}
\end{equation*}
$$

Đб́i với các 6 có s σ bi 2 , ti so

$$
\frac{\mathrm{Z}}{\left(1+2 \cos ^{5 / 2} \gamma+2 \cos ^{5 / 2} 2 \gamma+\ldots+2 \cos ^{5 / 2} \mathrm{n} \gamma\right)} \approx 4,37
$$

Do đó có thé viét

$$
F_{\text {max }}=4,37 \frac{F_{r}}{Z}
$$

Đương cong I trên hinh 17.10 biêu thị sự phan bô lực theo hệ thức (17-2) dơi với δ không co khe hỏ. Nêu σ có khe hở tải trọng sê tập trung vào các con lăn nàm gần đường tác dụng của F_{r}, só con lăn chịu tải nàm trên cung nhó hơn 180° và lực $F_{\text {max }}$ lơn hơn so vớ tính toán. Đường cong II trên hình 17.10 biêu thị sự phân bo lực dối

$$
\begin{equation*}
F_{\max }=5 \frac{F_{r}}{Z} ; F_{i}=5 F_{r} \cos ^{3 / 2} \frac{i \gamma}{Z} \tag{17-4}
\end{equation*}
$$

Đơi với ơ dũa trục dã $F_{\max }=4,6 \frac{F_{r}}{Z}$.
Dơi với các loại ơ khác cūng tinh toán tương tự.

$$
\begin{equation*}
F_{\max }=\frac{F_{a}}{(0,8 Z)} \tag{17-5}
\end{equation*}
$$

 bơ lực không đéu giữa các bi, do chẽ tạo thiếu chính xác.

Qua phân tích và tinh toán trên đây, ta thấy rà̀ng sự phân bó lực giữa các con lân phụ thuộc nhiếu vào độ chính xác chê tạo và trị sớ khe hơ hướng tâm (đới với ơ đỗ và đỡ chặn). Vi vậy trong chế tạo ổ lãn, yêu cẩu vế chính xác chế tạo rất cao. Trong ở đỡ và ơ đõ chặn, khe hở càng lớn sớ con lạn tham gia chịu tải càng ít, lực phân bố càng khống đêu, do đó tăng mài mòn ớ trong quá trình làm việc.

17.3.2. Ửng suát tiếp xúc trong σ lăn

Ứng suất tiếp xúc sinh ra trong vùng tiếp xúc giữa con lăn với vòng trong và vòng ngoài ở. Tính toán cho thấy ứng suất tiếp xúc giửa con lăn với vòng trong lớn hơn ứng suất tiếp xúc giữa con lăn với vòng ngoài, vì nếu xét trong mặt cát như hình 17.10, trong trường hợp đầu con lăn tiếp xúc với vật lơi (vòng trong) diện tích tiép xúc nhỏ hơn so với con lăn tiếp xúc với vật lỡm (vòng ngoài). (Riêng đới với ồ lòng cấu hai dãy, ứng suất tiếp xúc giữa con lăn với vòng ngoài lớn hơn).

Trong ở bi, vòng δ o và bi tiếp xúc ban đầu theo điểm, ứng suất tiếp xúc cực đại $\sigma_{1 f}$ tính theo công thức (1-5). Trong ở đũa, đũa và vòng ở tiếp xúc ban đầu theo đường, ưng suất tiếp xúc cực đại σ_{H} tính theo công thức (1-4). Các công thức xác định ựng suất tiếp xúc σ_{H}, đơi với mối loại δ, cho trong các sách vế ở lăn. Ta không chú y dến các công thức này vì tính toán đé chọn δ lăn không dụa vào ứng suất mà căn cứ vào tải trọng tác dụng lên δ.

Tuy nhiên, điếu cần chú ý là, khi ở làm việc, mỡi điểm trên bê mặt tiếp xúc giữa vòng ớ và con lăn chịu ứng suất tiép xúc thay đởi theo chu ky mạch đợng gián đoạn. Khi só chu kỳ thay đởi ứng suất khá lớn con lản và vòng σ có thể bị hỏng do mỏi bé mặt làm việc.

Như đã nơi ở trên, ứng suất tiếp xúc giữa con lăn và vòng trong có trị số lớn nhất tại các điểm tiép xúc trên vòng trong. Khi vòng trong quay, cứ sau một vòng quay mỗi điểm trên vòng trong chịu 1 lần ứng suất lớn nhất. Nếu vòng trong đứng yên, vòng ngoài quay thì cứ mỗi con lăn lăn qua điểm này, vòng trong lại chịu 1 lấn ứng suấ lớn nhất, nghia là trong trường hợp này số chu kỳ ưng suất lớn nhắt và mối điểm tiếp xúc của vòng trong phải chịu sẽ tăng lên nhiếu. Do đó nếu vòng ngoài quay độ bên mở của δ sẽ giám xuơng và ở chi làm việc được trong thời gian tương đới ngắn hơn (so với trường hợp vòng trong quay).

17.4. ĐỘNG HỌC VÀ ĐỐNG LƯC HỌC Ố LAN

17.4.1. Dộng họe 6 lăn

Theo quan điểm động học có thể coi 6 lăn như mợt cơ cấu hành tinh. Vận tớc của các phần tử trong ổ lăn có thẻ̛ xác định theo nguyền tả́c Vilis (nguyên tăc dừng cần trong cơ cấu hành tinh) và trong ớ lăn coi vòng cách là cần, vòng ngoài và vòng trong có chức năng các bánh trung tâm, các con lăn thực hiện chức năng của các bánh hành tinh.

Xét trường họ̣p ơ bi đõ̃ như trên hinh 17.11, vòng trong 1 có tẩn só quay $\mathrm{n}_{1} \mathrm{vg} / \mathrm{ph}$, còn vòng ngoài 3 nằm yên, ta có

$$
\frac{n_{1}-n_{c}}{-n_{c}}=-\frac{d_{3}}{d_{1}}=-\frac{d_{m}+D_{w}}{d_{m}-D_{w}}
$$

Hinh 17.11
trong đó $\mathrm{d}_{\mathrm{m}}=0,5\left(\mathrm{~d}_{3}+\mathrm{d}_{1}\right)$ - đường kính vòng tròn qua tâm các bi ; $\mathrm{D}_{\mathrm{w}}-$ dừ̛̀ng kính bi ; d_{3} và d_{1} - đưỡng kính các vòng tròn tiếp xúc giữa bi với vòng ngoài và vòng trong, n_{c} - tần só quay của vòng cách ($\mathrm{vg} / \mathrm{ph}$). Do đó tìm được

$$
\begin{equation*}
n_{c}=0,5 n_{1}\left(1-\frac{D_{w}}{d_{m}}\right) \tag{17-6}
\end{equation*}
$$

Có thể suy ra hệ thức (17-6) bàng cách xẹ́t so đồ vận tớc (hilnh 17.11) vá̛i chú ý là vận tớc vòng của vòng cách

$$
v_{c}=0,5 v_{1}=\omega_{1} d_{1} / 4
$$

trong đó $\omega_{1}=\pi n_{1} / 30-$ vận tớc góc của vòng trong; $d_{1}=d_{m}-D_{w}$ và vận tớc góc của vòng cách

$$
\omega_{c}=2 v_{c} / d_{m}
$$

Tần số quay n_{b} (vg/ph) của bi quay quanh trục bi (trong chuyển đợng tương đới đới vói vòng cách ${ }^{\text {º }}$)

$$
\begin{equation*}
n_{b}=0,5 n_{1}\left(\frac{d_{m}}{D_{w}}-\frac{D_{w}}{d_{m}}\right) \tag{17-7}
\end{equation*}
$$

; Trường hợp vòng ngoài quay với tần $s \sigma^{6} \mathrm{n}_{3} \mathrm{vg} / \mathrm{ph}$, vòng trong nàm yên, tần so quay $\mathrm{n}_{1} \mathrm{c}$ của vòng cách

$$
\begin{equation*}
\mathrm{n}_{\mathrm{c}}=0,5 \mathrm{n}_{3}\left(1+\frac{\mathrm{D}_{\mathrm{w}}}{\mathrm{~d}_{\mathrm{m}}}\right) \tag{17-8}
\end{equation*}
$$

Đới với ờ đūa tính toán cũng tương tự.
Các hệ thức trên đây cho thây khi vòng trong quay hoạc vòng ngoài quay, vòng cách sê quay cùng chiêu. Tân sơ quay của vòng cách phụ thuộc vào đường kính D_{w} của bi. Chảng hạ như trường hợp vòng trong quay (vòng ngoài nàm yên), đường kính bị càng lớn thi vòng cách quay càng chậm. Vl thé nêu trong mợt 6 có các viên bi lơn nhỏ khác nhau, bi nhơ có xu hưỡng đảy vòng cách đi nhanh hơn, trong khi các bi lón muơn giữ vòng cách chạ̀m lại, do đó giữa bi và vòng cách co thế sinh ra áp suất và ma sát lơn, gây nên mòn vòng cách. Ố lăn nêu được chê tạo với khoảng dung sai cho phép càng rợng (độ chinh xác càng thấp) thì mòn xảy ra càng nhiếu.

Hinh 17.12

Hinh 17.13

17.4.2. Dông lựe họe 6 lan

Khi 6 lăn quay, mới con lăn bị ép vào vòng ngoài bơi lực ly tâm (hình 17.12)

$$
\begin{equation*}
F_{\mathrm{It}}=\frac{\mathrm{m} \omega_{\mathrm{c}}^{2} \mathrm{~d}_{\mathrm{m}}}{2} \tag{17-9}
\end{equation*}
$$

[^5]trong đó: m - khđ̛i lự̛̣ng của con lăn; ω_{c} - vạn tớc gớc của vòng cách; d_{m} - đường kính vòng tròn qua tâm con lăn.

Ò trên có nêu lên ràng ưng suất tiếp xúc ơ vòng trong lơn hon so vaí ơ vòng ngoài (trừ 6 lòng câu hai dãy), cho nên tinh toán đọ bên và tưới thọ của 6 lăn ta chú ý đ̛̛n vòng trong và bó qua ânh hường của lực ly tâm. Tuy nhiên, điêu này chi đúng khi ơ làm việc vơi vậ tớc gớc đự̛̣ giói hạn trong phạm vi nhât định (cho trong các tài liẹu ve δ lăn).

Đơi vớ các ớ làm viẹc với vạn tớc cao, ảnh hường của lực ly tâm tăng lên. Dạ̣ biẹt, lưc ly tâm rât có hại đơi vơi 6 chạn, làm cho bi kẹt và tăng mòn vòng cách.

Ngoài lực ly tâm, đơi vơi 6 chặn, bi còn chịu tác dụng của mômen con quay (do phương trục quay cùa bi thay dơi trong khong gian, hình 17-13).

$$
\begin{equation*}
\mathrm{M}_{\mathrm{q}}=\mathrm{I} \omega_{\mathrm{b}} \omega_{\mathrm{c}} \tag{17-10}
\end{equation*}
$$

trong dó : I - mômen, quán tính của bi đđ̛i vói trục của bi ;
ω_{b} và ω_{c} - vân tơc gơc của bì (quay quanh truc bi) và của vòng cách.
Vạn tớc gớc ω_{b} và ω_{c} càng lơn thì M_{q} càng lớn.
Dưới tác dụng của mômen, con quay bi có thê bị quay theo phương vuông gooc với phương lăn (phương cuà rânh lăn). Bi bị quay do M_{q} se gay thêm mât mát cong suăt và mòn.

Trong δ đō, phương của trục quay của bi hoạ̣ đūa khong thay đơi, do đó không co tác dụng cua momen con quay.

Trong 6 d đ chặn mômen con quay có trị s σ

$$
\begin{equation*}
\mathrm{M}_{\mathrm{q}}=\mathrm{I} \omega_{\mathrm{b}} \omega_{c} \sin \alpha \tag{17-11}
\end{equation*}
$$

trong đó α - gờc tiếp xúc (hình 17-4c)
Như vạy, các nhân tơ động lực học có ânh hưởng xấu đđ̛i với 6 chặn. Bởi thé̛ s σ vòng quay cho phép trong 1 phút của 6 chạ̣n khá nhỏ so với 6 đỡ và 0 đ̀ đỡ chặn. Khi cần làm việc vơi tân sơ quay cao nên dùng ơ đơ chặn thay cho ơ chặn.

17.5. TÍNH TOÁN Ó LAN

17.5.1. Các dạng hỏng chủ yé̛u và chỉ tiêu tính toán 6 lăn

Ổ lăn có các dạng hỏng chủ yệ sau :
Bién dạng $d u$ bé măt làm viẹc do chịu tải trọng va đạ̣ hoạc tải trọng tînh quá lơn khi 6 không quay hoạc quay chạm.

Tróc vì mói bê măt làm viêc do ưng suất tiép xúc thay đói khi σ quay. Khi số chu kỳ thay đới ưng suât đạt tới trị so đư lỡn, trên bê mặt tiêp xúc (của rãnh lăn hoạc con lăn) sinh ra những vêt nựt rơi phát triển thành trớc. Trớc thương bát đâuu trên ränh lân của vòng chịu ựng suắt lơn nhất, đơi với phân lơn 6 lăn là vòng trong; đđ̛i
 co tinh thấp nhât.

Trớ là dạng hỏng chủ yẽ̛u trong các 6 làm việc với sơ vòng quay cao, chịu tảa trọng lơn. Vi vạy 8 đ được giừ không cho bụi hoặc hạt kim loại lọt vào.

Mòn vòng và con lân xảy ra đói với các δ không được giữ sạch (đê bụi hoạc hạt kim loại lọt vào). Mòn là dạng hông chủ yêu của các δ lăn trong ôtó, máy kéo, máy mỏ, máy xây dựng v.v... làm việc trong các môi trường có nhiếu hạt mài mơn.

Vô vòng cach do lực ly tâm và tác dụng của con lăn gây nên. Nhiếu ở bị hơng do vòng cách bị võ, nhất là đới với các ớ quay nhanh.

Vỡ vòng ơ và con lân xảy ra khi ô bị quá tả̉i do va đập, chân động hoạc do lấp ghép không chính xác (khiến cho vòng bị lệch, con lăn bị kẹt v.v...). Nếu sử dụng đúng kỉ thuật, dạng hông này không xảy ra.

Hiện nay tính toán ô lăn dựa theo hai chỉ tiếu :

- Các ở làm việc với vận tớc thăp (hoạ̣c đứng yên) được tính theo khả nãng tải tính đê tránh biên dạng dư bê mật làm viẹc.
- Các ô lăn làm việc với vận tớc cao hoặc tương đới cao được tinh theo dộ bên lau còn gọi là tính theo $k h a ̉$ năng tadi aông, đé tránh tróc vì mỏi.

Phưong pháp tính ở lăn theo các chl tiêu khác hiện nay chưa có vì các chl tiêu này có liên quan đến nhiêu nhån tớ ngã̃u nhiên rất khó xác định.

Vi ở lăn được tiêu chuân hớa và được sản xuât hàng loạt lớn cho nên quá trình tính toán và thử nghiệm đã xác định được khả năng tải của từng loại, kiểu và cỡ kích thước δ lăn. Khi thiết ké máy không cẫn thiét ké σ lăn mà chi cân tinh và chọn ơ lận tiếu chuẩn theo các cong thức quy ược. Phương pháp tính chọn δ lăn tiêu chuẩn cưng được tiêu chuẵn hóa.

17.5.2. Khả năng tải động của 6 lăn

17.5.2.1. Khả năng tải dông. Dưới tác dụng của ứng suất tiép xúc σ_{H} thay đơi, ồ bị hỏng chủ yêu do mỏi bể mặt tiếp xúc. Cơ sở xuắt phát để tính toán ở lăn theo độ bên lâu là phương trình đường cong mỏi tiêp xúc

$$
\sigma_{\mathrm{H}}^{\mathrm{m}} \mathrm{~N}_{\mathrm{c}}=\text { const }
$$

với $N_{c}-s$ s chu kỳ thay đởi ứng suắt ; m - s б mû.
Ững suắt tiếp xúc có quan hệ với tải trọng tác dụng lên δ và sơ chu kì thay đơi ưng suât có liên quan đên sơ vòng quay của ô cho tới hơng, do đó trên co sở các thí nghiệm ve ơ lản người ta lập được quan hệ giữa tải trọng P, tinh bằng niutơn tác dụng lên 6 với tuơi thẹ L, tinh băng triẹu vòng quay
$\mathrm{Pq}^{\mathrm{q}}=$ const
với $q-s \sigma_{\text {mũ }}$ đới với δ bi $q=3$ và đơi vơi δ đưa $q=\frac{10}{3}$.
Có thẽ viêt hẹ thức (17-12) dưới dạng

$$
\begin{align*}
& \mathrm{L}=(\mathrm{C} / \mathrm{P})^{\mathrm{q}} \tag{17-13}\\
& \mathrm{C}=\mathrm{PL}^{1 / \mathrm{q}} \tag{17-14}
\end{align*}
$$

trong đó : C - hả̀ng sô, được gọi là khả nãng tải đợng của σ lăn, tính bầng niutơn (N). Rơ ràng là nếu $\mathrm{L}=1$ (1 triệu vòng) thỉ $\mathrm{C}=\mathrm{P}$. Vậ̂y khả năng tải động C của ơ đở và δ đỡ chặn được hiểu là tải trọng hướng tâm không đơi (tính băng niutơn) mà σ (có vòng ngoài nàm yên) có thể chịu được với so chu ki làm việc cho đến hỏng (tuôi thọ) $L=1$ triệu vòng quay. Đơi vơi 8 chạ̣n và 8 chặn đơ, khả năng tải dợng là tải trọng dọc trục không đới (tính bằng niutơn) mà ơ có thê chịu được với só chu kì cho đén hỏng $L=1$ triẹu vòng quay của một trong các vòng 8 .

Hẹ thức (17-13) được dùng để xác định tuởi thọ L (triẹu vòng quay) khi đã biết C và P. Theo hệ thức (17-14) tính được C và tra sớ tay chọn δ lăn. Cūng có thé theo các hẹ thức trên tính được tải trọng cho phép đới với δ lăn. Tính toán δ lăn theo dộ bến lâu còn đượ gọi là tính toán theo khả nảng tải động của 8 lăn. Các công thức (17-13) và (17-14) chí dúng trong truòng họp tan sб quay cuia б $n \geqslant 10$ vgiph và không vuơt quá tăn só quay tới hạn của hai o dang xet.

Gọi L_{h} là tuới thọ của δ, tính bà̀ng giờ, ta có

$$
\begin{equation*}
\mathrm{L}=60.10^{-6} \cdot \mathrm{~nL} L_{h} \tag{17-15}
\end{equation*}
$$

Do đó có thê viết các hệ thức (17-13) và (17-14) như sau :

$$
\begin{equation*}
L_{h}=\frac{10^{6}(\mathrm{C} / P)^{9}}{60 \mathrm{n}} \text { hoạce } C=P\left(\frac{60 \mathrm{~nL}_{h}}{10^{6}}\right)^{1 / q} \tag{17-16}
\end{equation*}
$$

Khi tần só quay của $6 \mathrm{n}=1 \div 10 \mathrm{vg} / \mathrm{ph}$ láy $\mathrm{n}=10$ đé tính toán. Nêu $\mathrm{n}<1$ $\mathrm{vg} / \mathrm{ph}$ tải trọng tác dụng len δ dược coi như tải trọng tỉnh và chi kiểm nghiẹm δ theo khả năng tải tỉnh.

Khả năng tải tỉnh C của δ cho trong các bảng 6 lăn là khả năng tải đợng của 90% các δ cùng loại và cùng cỡ kích thước, nghia là 90% s $\sigma \quad \delta$ được chọn theo trị so C nảy cơ tườ thọ được đảm bảo bàng hoặc lón hon so với yêu cầu, còn 10% so δ có thé bị hơng vỡi thời gian sớm hon dự định. Như vậy xác suất làm việc không hỏng của các 6 lăn này $\gamma=90 \%$ hay tuới thọ tính đượ là tuới thọ 90% (xem chương 3). Néu tăng trị so γ thi tuời tḥ giảm xuông. Vơi trị so $\gamma \neq 90^{\circ}$ có thế tính tuới thọ L theo công thức :

$$
L=a_{1}(C / P)^{q}
$$

$\begin{array}{lllllll}\text { Hệ s6 } a_{i} \text { phụ thuộc } \gamma & \gamma \% \ldots & 90 & 95 & 97 & 98 & 99\end{array}$

$$
\begin{array}{llllll}
& 1 & 0,62 & 0,44 & 0,33 & 0,21
\end{array}
$$

17.5.2.2. Tải trọng tuong dượg. Các trị so khả năng tải đọng của δ lăn cho trong
 trọng dơn giản : tải trọng hương tâm đơi với các ơ đơ và $\begin{gathered} \\ 0 \\ \text { đở chặn, tải trọng dọc }\end{gathered}$ trục dơi với σ chạn và ơ chặn đơ. Trong thự tế phần lơn σ lản chịu tác dụng đờng thòi vừa lực hương tam vừa lực dọc trục, tâi trọng có thé thay đới hoạc không thay đới theo thơi gian, ém hoạce co va đâp, nhiẹt độ của 6 là blnh thương, cao hoạc tháp... Đé xét đên các nhân tơ ảnh hương nêu trên, 6 lăn đực tính toán theo tải trọng tương dương. Tải trọng tuong auoong đới vơi ơ lăn đơ và đơ chạ̣n là tải trong huơng tam không dơi P, dưới tác dụng của táa trọng này 6 lăn cơ tươi thọ bà̀ng với tuới thọ của ơ làm việc trong điếu kiện chịu tải thực. Cūng định nghia tương tự như trên, đới với δ lăn chặn và chặn đỡ, tải trọng tương đương là tải trọng doc truc không abii P.

Tải trọng tương đương đới với δ lăn đỡ và đơ chặn được tính theo công thức

$$
\begin{equation*}
P=\left(X V F_{r}+Y F_{a}\right) K_{d} \cdot K_{t} \tag{17-17}
\end{equation*}
$$

Đơi với ở lăn chạ̣n đỡ

$$
\begin{equation*}
P=\left(X F_{r}+Y F_{a}\right) K_{d} \cdot K_{t} \tag{17-18}
\end{equation*}
$$

Đới với 6 lăn chạ̣n

$$
\begin{equation*}
P=F_{a} \cdot K_{d} \cdot K_{t} \tag{17-19}
\end{equation*}
$$

Trong các công thức trên F_{r} và F_{a} - tả̀i trọng hướng tâm và tải trọng dọc trục, N ; X và Y - hệ só tải trọng hướng tâm và tải 'trọng dọc trục (xem báng 17.1 và các sờ tay ơ lăn) ; V - hệ sơ phụ thuộc vòng σ quay, nêu vòng trong quay $V=1$, nêu vòng ngoài quay $\mathrm{V}=1,2$;

Các hẹ so tài trong X và Y cúa ó lan

Loại ${ }^{\circ}$		$\frac{\mathrm{F}_{\mathrm{a}}}{\mathrm{C}_{\mathrm{o}}}$	e	Ố môt day				Ô hai dãy				
		$\mathrm{F}_{\mathrm{a}} /(\mathrm{VF}) \leqslant \mathrm{e}$		$\mathrm{Fa}_{\mathrm{a}} /\left(\mathrm{VF} \mathrm{r}_{\mathrm{r}}\right)>\mathrm{e}$		$\mathrm{F}_{\mathrm{a}} /\left(\mathrm{VF}_{\mathrm{r}}\right) \leqslant \mathrm{e}$		$\mathrm{Fa}_{\mathrm{a}} /(\mathrm{VF})>\mathrm{e}$				
		X		Y	X	Y	X	Y	X	Y		
Ố bi đō			$\begin{gathered} 0,14 \\ 0,028 \\ 0,056 \\ 0,084 \\ 0,11 \\ 0,17 \\ 0,28 \\ 0,42 \\ 0,56 \\ \hline \end{gathered}$	$\begin{aligned} & 0,19 \\ & 0,22 \\ & 0,26 \\ & 0,28 \\ & 1,30 \\ & 0,34 \\ & 0,38 \\ & 0,42 \\ & 0,44 \end{aligned}$	1	0	0,5	$\begin{aligned} & 2,30 \\ & 1,99 \\ & 1,71 \\ & 1,55 \\ & 1,45 \\ & 1,31 \\ & 1,15 \\ & 1,04 \\ & 1,00 \end{aligned}$	1	0	0,56	2,30 1,99 1,71 1,55 1,45 1,31 1,15 1,04 1,00
$\begin{array}{\|c\|c} \hline \text { Ổ } & \alpha^{0} \\ & \\ \text { biō̃ } & \\ \text { chặn } & \\ & 12^{\circ} \end{array}$			$\begin{gathered} \mathrm{iF} \mathrm{a}_{\mathrm{a}} \\ \hline 0,014 \\ 0,029 \\ 0,057 \\ 0,086 \\ 0,11 \\ 0,17 \\ 0,29 \\ 0,43 \\ 0,57 \end{gathered}$	$\begin{gathered} \mathrm{e} \\ \hline 0,30 \\ 0,34 \\ 0,37 \\ 0,41 \\ 0,45 \\ 0,48 \\ 0,52 \\ 0,54 \\ 0,54 \end{gathered}$	1	0	$0,45$	$\begin{aligned} & 1,81 \\ & 1,62 \\ & 1,46 \\ & 1,34 \\ & 1,22 \\ & 1,13 \\ & 1,04 \\ & 1,01 \\ & 1,00 \end{aligned}$	1	$\begin{aligned} & 2,08 \\ & 1,84 \\ & 1,69 \\ & 1,52 \\ & 1,39 \\ & 1,30 \\ & 1,20 \\ & 1,16 \\ & 1,16 \end{aligned}$	0,74	2,94 2,63 2,37 2,18 1,98 1,84 1,69 1,64 1,62
	26°	-	0,68	1	0	0,41	0,87	1	0,92	0,67	1,41	
	36°	-	0,95	1	0	0,37	0,66	1	0,66	0,60	1,07	
		-	1,5tg α	1	0	0,40	0,4ctg α	1	0,45ctg α	0,67	0,67 ctg α	
$F_{\mathrm{r}}=0, Y=1$. Hệ s σX và Y của câc loại $\delta \mathrm{khác}:$ xem trong só tay δ lăn 												

$K_{\text {d }}$ - hệ sơ xét đến ânh hường cưa tài trọng đọng (xem bảng 17.2);
K_{t} - hệ sơ zét đên ành hường của nhiệt đợ, đơi với 6 lân bàng thép ШX15 lây K_{1} theo các trị só sau, tùy theo nhiẹt đọ t của δ

$\mathrm{t}^{\circ} \mathrm{C}$	<125	125	150	175	200	250
$\mathrm{~K}_{\mathrm{t}}$	1	1,05	1,1	1,17	1,25	1,4

 năng tải- đợng như một 8 dỡ hai dãy.
$H e ̣$ ad tải trong dong K_{d}

Tính chât tải trọng	K_{t}	Máy và thiết bi
Êm, không cơ va độp	1	Các dẫn động điêu khiển, các truyên động công suât nhơ, băng tải con lăn $v . v . .$.
Va dập nhẹ	1-1,2	Co cấu nâng của cân trục, của palăng điện, của cấu lăn, tời ; truỵ̣̂̂n động bánh răng chế tạo chính xác, động co điện công suất nhờ và trung bình, quạt nhỏ v.v...
Va đập trung binh	1,3-1,8	Hộp giàm tớc các loại ; truyên đợng bánh răng ; co cấu quay, di chuyển và thay đởi tầm với của cân trục ; trục chinh máy cát kim loại ; máy ly tâm và máy phân ly; máy điện và máy vận chuyến v.v...

17.5.2.3. Mộ vài dặc diém trong tính toân ó dō chặn

Tác dụng của lực dọc trục lên δ có các đặ điêm khác với lực hướng tâm : lực dọc trục một mặt phân bo đêu trên các con lăn, mặt khác gay nên đơi với mối con lăn trong δ đ̛̃ đã và ơ đỡ chặn (hoạc chặn đõ) một lực toàn phấn F_{n} (hình 17.14) khá lớn. V1 vậy bảng 17.1 cho các trị sठ X và Y khác nhau, phụ thuọ́c til so $\mathrm{F}_{\mathrm{a}} /\left(\mathrm{VF}_{\mathrm{r}}\right)$.

Nếu lực dọc trục oo trị só chưa vượt quá một giói hạn, tương ưng với ti sô $\mathrm{F}_{\mathrm{a}} /\left(\mathrm{VF}_{\mathrm{r}}\right)=\mathrm{e}$, sê không co tác hại xâu đơi với δ. Trong trương hộp nảy lực dọc trục làm giảm khe hơ trong ơ và giúp cho sự phan bơ lực trong δ. (kế cả lực hướng tâm) được đếu hon.

Vây néu $\mathrm{F}_{\mathrm{a}}\left(\mathrm{VF}_{\mathrm{r}}\right) \leqslant$ e ta bó qua lực dọc trục, lay $\mathrm{X}=1, \mathrm{Y}=0$. Truờng hợ $\mathrm{F}_{\mathrm{a}} /(\mathrm{VF})>\mathrm{e}$, nghỉa là khi lực dọc trục tương đơi lơn sẽ làm giàm tuới thọ của ơ lăn, do làm tang góc tiêp xúc, dẵn đên sự trự̛̣ các con lăn.

Trong 6 lăn đỡ chạ̣n, tác dụng của lực hướng tâm F_{r} sê sinh ra lực dọc trục phụ S (hinh 17.15). Đơi với 6 bi đđ̃ chặn

$$
\begin{equation*}
\mathbf{S}=\mathrm{e} \mathbf{F}_{\mathbf{r}} \tag{17-20}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{S}=0,83 \mathrm{eF} \mathrm{~F}_{\tau} \tag{17-21}
\end{equation*}
$$

Đơi với 6 đŭa côn

Hinh 17.14
Hinh 17.15

Do đơ phải xét đên các lực dọc trục phụ này khi tính tải trọng dọc trục F_{a} để xác định tải trọng tương đương. Giả sử ta cơ so đô láp ơ như hình 17.15 , chịu tác dụng của lực dọc trục từ ngoài là S_{a}, các ơ chịu các lực hương tâm $F_{r I}$ và $F_{r I I}$, gây nên các lực dọc trục phụ tương ứng là S_{I} và $S_{I I}$ Lực dọc trục tồng tác dụng lên 6 I và ó II là $F_{a I}$ và $F_{a l l}$ tương ứng. Công thức xâc dịnh lực $F_{a I}$ và $F_{a I I}$ cho trong bảng 17.3, û́ng với so đ a lực như hỉnh 17.15 .

Trường hợp tại 1 gới đỡ láp hai σ đõ̃ chạ̣n ngược chiêu nhau (chịu được lực dọc trục theo các chiêu ngượ nhau), tính toán như mộ ờ có hai day con lăn, các trị só X và Y lấy theo bảng 17.1 đơi với σ° hai dăy.

Bảng 17.3
Cong thûc xác dinh luc doc truc

Điêu kiẹn tai trọng	Lực dọe trục
$\mathrm{S}_{\mathrm{I}} \geqslant \mathrm{S}_{\text {II }} ; \mathrm{S}_{\mathrm{a}} \geqslant 0$	$\mathrm{F}_{\mathrm{aI}}=\mathrm{S}_{\mathrm{I}} ; \mathrm{F}_{\mathrm{alI}}=\mathrm{S}_{\mathrm{I}}+\mathrm{S}_{\mathrm{a}}$
$\mathrm{S}_{\mathrm{I}}<\mathrm{S}_{\mathrm{II}} ; \mathrm{S}_{\mathrm{a}} \geqslant \mathrm{S}_{\mathrm{II}}-\mathrm{S}_{\mathrm{I}}$	$\mathrm{F}_{\mathrm{aI}}=S_{\text {I }} ; \mathrm{F}_{\mathrm{aII}}=S_{\text {I }}+\mathrm{S}_{\mathrm{a}}$
$\mathrm{S}_{\mathrm{I}}<\mathrm{S}_{\mathrm{II}} ; \mathrm{S}_{\mathrm{a}}<\mathrm{S}_{\mathrm{II}}-\mathrm{S}_{\mathrm{I}}$	$\mathrm{F}_{\mathrm{aI}}=\mathrm{S}_{\mathrm{II}}-\mathrm{S}_{\mathrm{a}} ; \mathrm{F}_{\mathrm{aII}}=\mathrm{S}_{\mathrm{II}}$.

17.5.3. Khả năng tải tính của 6 lăn

Theo công thức (17-14) tải trọng P cơ thể tăng lên vo hạn nêu ta giảm tuời thọ L của ớ xuóng rất thấp. Trên thực tớ thì tải trọng P bị giới hạn bởi khả nång tải tĩnh của ơ.

Khả na̛ng tải tính C_{o} của 8 là tải trọng tïnh gay nen biến dạng dư tờng cộng của con lăn và đường lăn bâng 0,0001 đường kinh con lăn tại vùng tiớp xúc chịu tải lớn nhất. Lúc này ứng sưá̛t tiếp xúc sinh ra tại dây vào khoảng 3000 MPa đới với ơ bi và 5000 MPa đơi với O_{o} đưa. Tính toán theo khả năng tâi tỉnh được dùng đế chọn σ lăn làm viẹ̣c với tần so quay tháp $\mathrm{n}<1 \mathrm{vg} / \mathrm{ph}$, khi só chu kỳ chịu tải nhó khơng gay nên sự phá hủy mỏi và đẻ̛ kiếm tra các ơ được tính toán theo khả năng tải động.

Điêu kiện kiểm nghiệm khả năng tải tỉnh

$$
\begin{equation*}
P_{0} \leqslant C_{0} \tag{17-22}
\end{equation*}
$$

trong đó P_{o} - tải trọng tinh tương đưong $(\mathrm{N}) ; \mathrm{C}_{\mathrm{o}}$ - khả năng tải tīnh của o $\mathrm{O}_{\mathrm{o}}(\mathrm{N})$ cho trong các só tay 6 lăn.

Tải trong tinh tuơng dưong P_{o} là tảai trọng tïnh hương tam đơi vơi δ đõ và δ đơ chặn. Thi trọng tỉnh dọc trục đới vơi 8 chặn và 6 chặn đơ được tính theo các cong thức :

Ổ đơ và đ̛̃ chặn :

Ở chặn và chặn đõ

$$
\left.\begin{array}{l}
P_{o}=X_{o} F_{r}+Y_{o} F_{a} \tag{17-23}\\
P_{o}=F_{r}(k h i \alpha=0)
\end{array}\right\}
$$

$$
\left.\begin{array}{l}
P_{o}=F_{a}+2,3 \cdot F_{r} \operatorname{tg} \alpha \tag{17-24}\\
P_{o}=F_{a}\left(\operatorname{khi} \alpha=90^{\circ}\right)
\end{array}\right\}
$$

Đới vơi 6 bi đỡ và đỡ chặn và ó đưa đỡ chặn P_{0} lấy theo trị só lơn nhất trong hai trị so tinh theo các cong thức (17-23).

Các hệ sơ tải trọng tinh X_{o} và Y_{o} cho trong bảng 17.4

Các hẹ só tài trong tính X_{0} và Y_{o} của 6 lan

Loai 6	Ổ một dãy		Ơ hai day	
	X_{0}	$Y_{\text {o }}$	X_{0}	Y_{0}
Ổ bi đō	0,6	0,5	0,6	0,5
$\begin{aligned} \text { Ổ bi đô chạn } \alpha & =12^{\circ} \\ \alpha & =26^{\circ} \\ \alpha & =36^{\circ} \end{aligned}$	$\begin{aligned} & 0,5 \\ & 0,5 \\ & 0,5 \\ & \hline \end{aligned}$	$\begin{gathered} 0,47 \\ 0,37 \\ 0,28 \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 0,94 \\ 0,74 \\ 0,56 \end{gathered}$
Ổ đũa côn đơ chặn	0,5	0,22 cotg α	1	0,44 $\operatorname{cotg} \alpha$

17.5.4. Cách tính và chọn 6 làn

Trong thực té, thiết kẽ σ lăn thưỡng là tính toán đé chọn loại, kiếu và cõ kích thước 6 cần thiết trong so các 6 lăn được chê tạo sẫn theo tiéu chuẩn.
 điêu kiện (17-22)

$$
P_{0} \leqslant C_{0}
$$

Nêu sơ vòng quay của ơ $n \geqslant 10$ vglph, Ở dược chọn theo khả năng tải động, đế đảm bảo độ bên lâu (tuời thọ) của ớ.

Trước hết xác định tải trọng tương đương P , tuới thọ L [công thức (17-15)] và theo cơng thức (17-14) tính khả nång tải động $C_{\text {tinh }}$. Sau đó tra bảng trong các sơ tay 6 lăn, chọn δ có kiểu và cỡ kích thươ thích hợp, có khả nång tải động của ó

$$
\begin{equation*}
\mathrm{C}_{\text {tinh }} \leqslant \mathrm{C}_{\text {bàng }} \tag{17-25}
\end{equation*}
$$

Truơng hơp σ có tăn só quay $1<n<10 \mathrm{vg} / \mathrm{ph}$, 6 dược tính theo khả năng tải động và lấy $n=10 \mathrm{vg} / \mathrm{ph}$ dé tính toán tuơi thọ L và $\mathrm{C}_{\text {tinh }}$.

Nếu ở làm viẹc với vận tớc cao, cần kiểm tra sơ vòng quay của σ theo điêu kiện $\mathrm{n} \leqslant \mathrm{n}_{\mathrm{gh}} ; \mathrm{n}_{\mathrm{gh}}$ - tân só quay giói hạn của δ, cho trong các S ó tay o° lăn.

Truòng hơp o lăn làm viẹc với tải trong thay dơi, tải trọng tương dương P trong các công thực (17-13) và (17-14) được thay bàng tải trọng tương đương P_{E} có xét đơn chế đọ thay đỡi tải trọng

$$
\begin{equation*}
P_{E}=\sqrt[q]{\sum\left(P_{i}^{q_{L}}\right) / \sum L_{i}} \tag{17-26}
\end{equation*}
$$

trong đó P_{i} - tải trọng tương đương tính theo cong thức (17-17), (17-18) hoạc (17-19) tùy loại δ, trong chế độ tải trọng thứ i của phớ tải trọng, $L_{i}-s \delta$ triẹu vòng quay trong ché dộ $\mathrm{i} ; q$ - só mũ, có thê lấy $q=3$ chung cho 6 bi và δ đũa.

Trường hợp tải trọng thay đơi được qui vé các ché đọ điển hình như đớ thị trên
 thức (10-70) đơi vôi bánh răngl.

$$
\begin{equation*}
\mathrm{L}_{\mathrm{hE}}=\mathrm{K}_{\mathrm{HE}} \cdot \mathrm{~L}_{\mathrm{h}} \Sigma \tag{17-27}
\end{equation*}
$$

trong đơ $L_{h} \sum=\sum \mathrm{t}_{\mathrm{i}}$ - tơng thời gian làm viẹc của ó lăn ; K_{HE} - hệ so quy đơi, tra theo bảng 10.9 (trang 178 , CTM - tập 1) vì $q=3$ cüng bàng vđi $\mathrm{m}_{\mathrm{H}} / 2=3$.

Khi đã biết L_{hE} ta co thé tính đưọc so triẹu vòng quay

$$
\begin{equation*}
L_{\mathrm{E}} \stackrel{\mathrm{nE}}{=} 60.10^{-6} \mathrm{~nL}_{\mathrm{hE}} \tag{17-28}
\end{equation*}
$$

Trị so L_{E} được dùng trong tính toán theo công thức (17-14) đ\&̛ tính khả năng tải động C , lằy $\mathrm{L}=\mathrm{L}_{\mathrm{E}}$ và P bằng trị sơ tải trọng lớn nhá̛t.

Xac dịnh tuơi tho của o. Nêu nhu δ đá đực chọn trưóc theo kêt câu, co thé tính toán xác định tuới thọ L_{h} của δ bàng giơ theo công thức (17-16).

Dơi với một só loại máy và cơ cấu nên láy tuỡi thọ L_{h} theo các trị sơ sau :

- Các cơ cấu làm việc trong từng thời gian ngán (bång tải nhỏ, cẩn trục trong phân xương lấp ráp, máy nông nghiệp v.v...) $\mathrm{L}_{\mathrm{h}} \geqslant 4000$ giớ.
- Các cơ cấu quan trọng, làm việc cơ nghi (thang máy, băng tải trong sản xuât theo dây chuyên v.v...) $L_{h} \geqslant 8000$ gid.
- Các máy làm viẹc 1 ca, chịu tải không hết mức (động cơ điện tinh tại, các họp giàm tớc công dụng chung v.v...) $\mathrm{L}_{\mathrm{h}} \geqslant 12000$ giò̀.
- Các máy làm viẹc 1 ca, chịu tải đủ mức (quạt, cẩn trục, máy cất kim loại, máy gia công gơ, máy in, máy dẹ̣t v.v...) $\mathrm{L}_{\mathrm{h}} \geqslant 20000$ giơ.
- Các máy làm việc suốt ngày đêm (bom, máy nên khi, truyên động trong tàu thủy '?v.v...) $\mathrm{L}_{\mathrm{h}} \geqslant 40000$ giò.

Môt s σ diếm càn chú \mathfrak{y} khi chon lọ̣i δ lăn

- Với cùng một điêu kiẹn làm việc (đặc tính tải trọng, tần so quay v.v...) cơ thé chọn các loại δ khác nhau. Khi chọn loại 6 phải xét đén giá thành và tham khảo các két cafu tưong tự.
- Ở bi đỡ chê tạo dơn giản và giá rế hơn cả, vì vây được dùng phó biến trong các ngành ché tạo máy.
- Khi trục co vạn tớc cao, dùng σ bi dơ co the làm viẹc tớt, nhât là dùng các δ bi đơ co vơng cách bàng kim loai màu hoạc tectolit. 8 bi đơ cho phép trục co thé nghieng $15^{\prime}+20^{\prime}$.
- δ duàa co khả năng tải cao hơn δ bi cùng kich thước và chịu tải trọng va đạp tớt vi cơ diện tích tiệ xúc giừa con lân và ṿòng ơ lơn hơn. Tuy nhiên, nêu dùng các loại δ đūa không tự lưa (δ diaa trụ, δ dua con) trong trững họp trục co do cững tháp hoạc láp ghép thiéu chính xác, 6 sê rât chơng hỏng vì lúc này các vòng 6 chỉ tiếp xúc vơi các cạnh mép cưa dua mà khong tiép xuc theo đương sinh.
- Ó bi lòng cấu hai dáy và σ dûa lòng câu hai dây được dùng khi trục có góc nghieng lơn (tời $2+3^{\circ}$). Giá tiên các loại δ° này dất hon δ° mồt dăy.
- Ớ dáa trụ xoán chi chịu được tải trọng hương tam, loại σ này chịu tải trọng va đạp tớt hơn các loại khác.
- Đê chịu tải trọng dọc trục khi vạn tớc cao, tớt nhắt nen dùng 6 bi dō chặn cơ góc tiêp xúc lớn ($\alpha=26^{\circ}$ hoặc 36°).

17.6. KÊT CẤU GÓI ĐỚ Ơ LAN

Gơi đo δ lăn bao gốm phần vơ, các chi tiét máy đê định vị o và bộ phận bôi trơn. Kết ca̛u gơi đō phải đảm bảo chịu được lực hượng tâm và lực dọc trục, ngăn chạ̣n sự
dịch chuyễn của trục theo dọc trục, làm hỏng sự làm việc bình thường cưa các chi tiết máy, khác láp trên trục như bánh răng, bánh vit v.v... hoạ̣c làm hỏng bọ phạn che kin 6. Ô phải được định vị và lấp ghẹ́p trong vơ máy và trên trục đáp ứng các yêu cầu ky thuạt.

17.6.1. Lâp ghép 6 lăn

Trong hệ thơng láp ghép vòng ờ vái trụe và vò hộ, vòng 6 được coi là tiêt máy co bản. Vông ơ được chế tạo vơi sai lậch khơng phụ thuộc tính chất láp ghép. Ngươi ta chọn các khoảng dung sai tiêu chuân đơi vái trục và 16 vó hộp, phờ họp vơi các khoảng dung sai cưa vòng ơ đê đạt đực sự lấp ghép cân thiét.

Khi chọn kiếu lắp ghép (chọn khoàng dung sai của trục và 10 vỏ họp) phải xét đến điêu kiện chịu tải của vòng 6 (chịu tải cục bọ, tuân hoàn hoạac dao động), chê độ làm việc (nhẹ, trung bình, nặng), loại và kich thức 6 , tần sơ quay, cách láp và diếu chinh khe hơ trong δ° v.v... Trưong họp trục quay, nhưng phương tác dung của lự không thay đơii (trương họp thường gạ̣p), vòng trong của ờ chịu tải tuân hoàn, còn vòng ngoải chịu tải cục bộ. Các vòng trong của 6 cân lấp co đọ dôi với trục, trục được chê tạo
 trung gian vơi 16 vỏ hộp, vó hộp ché tạo vái khoàng dung sai H7, K7, Js $7, \mathrm{~J}_{\mathrm{s}} 6, \mathrm{~K} 6$ v.v... Như vậy sê tránh đự̛̣c hiẹn tượng kẹt con lăn và mòn không đêu rănh lăn cưa vòng ngoài, khả năng di động của vòng ngoài cũng dê dàng khì lấp hoặc khi trục bị biên dạng do nhiẹt.

Chọn kiếu lâp cần xét tới che đồ làm viẹc của ớ. Tải trọng càng lơn và va đập càng nhiếu thì phải lâp càng chặt, vỉ biến dạng đàn hơi, biên dạng dư của các lớp bế mặt và bién dạng đản hồi cuaa vòng 6 càng lơn.

Khi chọn kiểu láp cŭng cẩn chú ý đên loại 0 . Nờ chung, ô đũa đự̛̣c chọn kiếu láp

Cac 6 lăn lơn được lấp chật hơn các 6 lăn nhỏ và trung bình vì chịu tải lớn hơn.

17.6.2. Dịnh vi 6 lăn

Ô lăn phải được định vị sao cho khơng di động hương tâm và dọc theo trục. Két câu g gio đỏ 6 phải loại trừ đự̛̣c khả nång gây kẹt con lăn do trục bị dăn nở vì nhiẹt hoạc do sai sô chê tạo, sinh ra taii trọng dọc trục. Thường dùng hai phương pháp sau đây đé dịnh vị 6 lăn trong vo máy.

Theo phưong plăap thứ nhăt δ ò một đầu trục đực co dịnh không cho di động theo phưong dọc trục (hình 17.16a và b), còn δ ó ơ đâu kia là tùy động, có the̛ di động dọc trục. 0 được co định dọc trục se ngăn cản dịch chuyến dọc trục vé mọt phía hoạc hai phia, chịu lự hương tâm và lực dọc trục. Ổ tùy dộng không cản trở dịch chuyên dọc trục và chi có thẻ̛ chịu lực hương tâm. Vi vạy đơi vơi gơi đỡ tùy đọng ngươi ta chi dùng 6 bi đơ hoặc 6 dūa đõ.

Phương pháp định vị nới trên dùng cho các kêt cáu trục có chiêu dài l tưong đđ̛i lơn ($1=10 \mathrm{~d} \div 12 \mathrm{~d}, \mathrm{~d}-$ đường kinh trục), hoạc đé bo trí trục trong các ơ láp trên những vò máy khác nhau. Trục của các bộ truyên bánh răng trụ, của các truyên dān băng tải v.v... được định vị ơ theo cách này. Nhược điếm của phương pháp này là đọ cững của trục thấp. Có thể làm tăng đọ cựng của trục bằng cách láp hai ớ tại gơi đō co định (hình 17.16 b) và điêu chinh hai ơ đê giảm thấp nhât sự dich chuyên hương tam và dọc trục của trục. Cách bô trí 6 này dự̛̣c dùng cho các trục láp bánh răng
côn và trục trong bô truyên trục vít bánh vít, đơi hỏi định vị chinh xác theo phương doc truc.

Theo cách thứ hai, trục được định vị ơ cả hai gơi đơ ơ ơ hai đầu trục (hinh 17.16 c và d). Đơn gián nhá̛t là thực hiện định vị theo so đô hình 17.16 c , được dùng rộng râi đơi với các trục tương đới ngân. Trong kêt cấu này mới δ sễ ngăn không cho trục dịch chuyên vê một phia. Để tránh kẹt δ° do nhiệt sinh ra khi làm việc, nên chừa khe hđ̛ giữa náp ờ và vòng ngoài $a=0,2 \div 0,5 \mathrm{~mm}$ (hình 17.16 c). Các náp 6 sê chịu lựe dọc trục.

Hinh 17.16
 vòng ngoài của δ có thê dịch chuyến nhơ khe hở tương dới lơn giữa δ và náp 6 .

Dịnh vị vòng trong cưa δ trên trục có the thực hiẹn bàng láp có đọ dôi (hình 17.17a), bằng vòng và chớt (hinh 17.17 b), vòng lò xo, đai $\mathrm{O}_{\mathrm{c}} \mathrm{xé}$, đai óc và chớt ché, năp chặn (hình 17.17 c , d , \mathfrak{d} và e) v.v...

Hinh 17.17
a)

c)

Hinh 17.18

Định vị vòng ngoài của ô trong vơ máy được thực hiện bàng vòng lò xo, vòng hai nửa (hình 17.18 a và b). Trong hộp giám tớc bánh rãng hoạc trục vit thường láp σ° đūa côn, đòi hỏi phải điêu chinh khe hở dọe trục. Có thé điéu chinh bàng cách dùng náp
ó có các độm móng 1 bằng kim loại (hình 17.18 c) hoạ̣c dùng náp mông có vit điếu chình (hinh 17.18 d). Náp mộng chi dùng được đơi với các hộp giảm tớc cơ vó hộp ghép và đường tâm các trục nà̀m trong mặt phẳng ghép. Điêu chinh khe hở trong 6 b δ trí như hỉnh 17.18 d nhờ vit điêu chỉnh 1 làm dịch chuyễn đẹm cứng 2.

17.6.3. Bôi trơn và che kín 6 lăn

Bôi tron ơ lăn rắt cần thiết để ngăn gì, giảm ma sát và đế làm nguội cục bộ chơ bế mặt làm việc của $\begin{gathered}\text { ờng như làm nguọi ở nơi chung. Ngoài ra, vê phương diẹn }\end{gathered}$ che kín δ, chá̛t bôi trơn cūng cơ tác dụng làm kin khe hở giữa σ và bọ phạn che kín, mật khác có tạc dụng làm giàm tiêng ơn.

Đe̛ bôi trơn, có thé dùng mơ hoạc dầu khoáng.
Mö bôi tron được dùng rộng răi khi nhiẹt đọ của $\sigma^{\circ} \mathrm{không}$ cao (không quá $100^{\circ} \mathrm{C}$), không co các yêu cầu quay phải rắt nhẹ và kết cấu gơi trục dễ tháo đế rửa và thay mơ.

Dău bôi trơn được dùng khi cẩn giảm mất mát do ma sát đến mức thấp nhất, khi
 phép của σ° khi dùng dâu đé bôi trơn là $120^{\circ} \mathrm{C}$, trường hợp đạ̣c biệt có thể tơi $150^{\circ} \mathrm{C}$ hoạ̣c hơn nữa.

Trương hơp ơ làm viẹc ơ nhiẹt đọ rật cao co thế dùng chât rắn ơ thế bụi như graphit và bisunfua molipden dê boi tron.
 không cho dấu cháy ra ngoài, cân dùng bộ phận che kin ớ.

Theo nguyên tấc tác dụng của bộ phạn che kín, co thé chia ra :

- Che kín do tiép xúc (vòng che, vòng phớt, vòng kim loại hoạc chất dẻo) dừng khi vận tơe the̛p và trung binh (hinh 17.19) ;
- Che kin bàng rānh dích dấc, cơ tác dụng cân sự chảy của chất lỏng (hoạc khi) qua các ränh hẹp, dùng vơi vận tớc bất kỳ (hình 17.20);
- Che kín nhơ ly tam, dâu hoạ̣c chất bấn rai vào đĩa chán đang quay sê bị hất ra do lực ly tam, dùng khi vạn tớc trung binh và cao (hinh 17.21);
- Che kín bà̉ng cách dùng phơi họp mọt 86 nguyên tác đã nêu.

Hinh 17.19

Hinh 17.20

Hinh 17.21

17.7. THI DU

Tính ơ lăn láp trục ra của hị̂p giâm tớc (hình 15.1) với các sơ liệu cho trong thí dụ của

nhiệt dợ làm việc của $\delta, \mathrm{t}<100^{\circ} \mathrm{C}$, phản lực tại gơi tựa A bên trái $\mathrm{F}_{\mathrm{r} 1}=\sqrt{\mathrm{A}_{1}^{2}+\mathrm{A}_{2}^{2}}=\sqrt{\left(1670^{2}+5900^{2}\right)}=6132 \mathrm{~N}$ phản lực tại gơi tựa B bên phải $\mathrm{F}_{\mathrm{r} 2}=\sqrt{\mathrm{B}_{1}^{2}+\mathrm{B}_{2}^{2}}=\sqrt{590^{2}+2420^{2}}=2491 \mathrm{~N}(\mathrm{hinh} 15.6) ;$ lực doc trục $\mathrm{F}_{\mathrm{a}}=860 \mathrm{~N}$ tác dụng vào δ phia trai. Tai trọng thay đơi theo ché đọ trung binh dông xac suaft (ché đọ II, tren
 trọng danh nghỉa (hệ so quá tải $K_{q t}=2$). Yêu câu so giờ làm viẹc của δ là 24000 giơ.

Giai
Vi lực dọc trục tưong đơi nhó, ta chọn loai δ bi dờ. Sa bọ chọn σ cõ nhẹ hep (loạt đường kinh nhẹ, loạt chiêu rọng hẹp), co ký hiẹu 211 dùng cho cà hai gơi tựa (đê thuạn tiện cho ché tạo và thay thé), tra các bảng so liệu vê ó lăn có $\mathrm{C}=34000 \mathrm{~N}$; $\mathrm{C}_{\mathrm{o}}=25600 \mathrm{~N}$; so vòng quay giới hạn $\mathrm{n}_{\mathrm{gh}}=6300 \mathrm{vg} / \mathrm{ph}$. Ta tinh toán đơi vơi ô láp bên trái, chịu tải lớn hơn.

Cân tính $\mathrm{C}_{\text {tinh }}=\mathrm{PL}^{1 / \mathrm{q}}$ [công thức (17-14)] và so sánh với $\mathrm{C}_{\text {bàng }}=34000 \mathrm{~N}$. Tai trọng tương dương P dược tính theo cong thức (17.17). Vơi ty so $\mathrm{F}_{\mathrm{a}} / \mathrm{C}_{\mathrm{o}}=860 / 25600=0,033$ tra bảng 17.1 tim dự̛̣ $e \approx 0,23$.

V1 vòng trong quay nên $V=1$. Ty so
$\mathrm{F}_{\mathrm{a}} /\left(\mathrm{VF}_{\mathrm{r}}\right)=860 / 6132=0,14<\mathrm{e}$, do $\mathrm{a} \delta \mathrm{X}=1$ và $\mathrm{Y}=0$ (bang 17.1).
Đơi với hộp giảm tớc lăy $K_{₫}=1,3$ (bảng 17.2) ; $K_{t}=1$ (nhiệt dọ làm việc dưới $100^{\circ} \mathrm{C}$).

Theo công thức (17-17).

$$
P=6132.1,3=7972 \mathrm{~N}
$$

V1 tải trọng thay đơi theo ché đọ II (đó thị hình 10.28), với $\mathrm{K}_{\mathrm{HE}}=0,25$ (bàng 10.9), ta tính so giờ làm viẹc tương dương

$$
\mathrm{L}_{\mathrm{hE}}=0,25.24000=6000 \text { gið }
$$

Theo cong thức (17.28) tinh

$$
\mathrm{L}_{\mathrm{E}}=60.10^{-6} \cdot 200 \cdot 6000=72 \text { triẹu vòng }
$$

Vậy hệ sơ khả năng tải [cơng thực (17-14)]

$$
\mathrm{C}_{\text {tính }}=7972 \sqrt[3]{72}=33165 \mathrm{~N}<\mathrm{C}_{\text {bång }}
$$

Kiềm nghiệm δ lăn theo khả năng tải tînh (vil khi làm viẹc δ cơ thể bị quá tải đột ngọt) theo điéu kiẹn (17-22) $P_{o}<C_{0}$

Tính tai trong tính tương aương P_{0}, với $X_{0}=0,6 ; Y_{0}=0,5$ (bảng 17.4), theo công thisc (17-23) và $\mathrm{K}_{\mathrm{qt}}=2$.

$$
\begin{aligned}
& P_{o}=(0,6 \cdot 6132+0,5 \cdot 860) \cdot 2=8218 \mathrm{~N} \\
& P_{o}=6132 \cdot 2=12264 \mathrm{~N}
\end{aligned}
$$

Láy trị sơ lơn hơn : $\mathrm{P}_{\mathrm{o}}=12264 \mathrm{~N}$ đê so sánh với $\mathrm{C}_{\mathrm{o}}=25600 \mathrm{~N}$
Vạy điéu kiẹn (17-22) được thỏa mản.
Như vậy ta chọn ơ bi đơ cõ nhẹ hẹp có ký hiệu 211, đường kinh $\mathrm{d}=55 \mathrm{~mm}$.

Chưong 18

KHÓP NỐI

18.1. KHÁI NIỆM CHUNG

18.1.1. Phân loại khớp nối

Khớp nơi dùng đê nơi các trục hoặc các tiêt máy quay khác với nhau. Ngoài ra, khớp nới còn được dùng làm một sơ cơng viẹc khác như : đóng mở cơ cấu, giảm tải trọng động, ngãn ngừa quá tải, điếu chinh tớc độ v.v...

Trường hợp cần có trục dải, nhưng nếu làm trục liên sē gạ̣p khó khăn trong sân xuất, lấp ghép hoạc vận chuyển, cho nên chế tạo nhiếu trục ngấn, nỡi lại với nhau bằng nói trục chạt.

ĐÊ nới các trục khó đảm bảo chính xác vị trí tưong đới, dùng nới truc bư, là loại khớp nối có khả năng bù lại những sai lęch vị trí tương đới giữa các trục.

Trong các máy làm việc có va đạp nhiêu, nớ trục aản hờ có thé giảm bớt tải trọng dộng.

Đới với những máy hoạ̣c cơ cá̛u phải đóng mở luôn thỉ dùng ly hơp, nhờ đớ co thé tách hoạc nối hai trục trong bât kỳ lúc nào.

Do tinh chất làm việc của máy hoạ̣c do sử dụng không đúng kỹ thuật, máy có thê bị quá tải. Dế tránh cho các tiết máy khỏi bị gãy hỏng khi quá tải, düng ly hơp an toàn.

Khi cần truyến chuyễn động quay chl theo một chiếu nhất định, dùng ly họp mơt chietu.
Ly hợp an toàn, ly hợp mợt chiếu và một só lọ̣i khác không cần phải điếu khiễn được gọi chung là ly hơp tu dơng.

Theo công dụng, có thẻ̛ chia khớp nối ra làm ba loại lớn (xem sơ đô).

- Nơi truc : dùng đê nơi cơ định các trục, chl khi nào dừng máy, tháo nơi trục thì các trục mới rời nhau.

Ly hơp : có nhiệm vụ nơi hoạ̣c tách các trục (hoạc các tiết máy quay khác) trong bất kỳ lúc nào.

- Ly hợp tu dờng: có thê tự động nơi hoạ̣c tách các trục (hoạ̣c các tiết máy quay khác). So dơ phân loại các khóp noi thong thuờng

Dượ đay chi giơi thị̣̂u một số loại khợ nờ thuòng düng.

18.1.2. Khái quát vè tính toán chọn khóp nơi

Các loại khớp nơi thông dụng đả được tiếu chuẫ hơa. Trị so mômen xoấn mà khớp nới có thế truyến được $\mathrm{T}_{\text {bảng }}$ cho trong các báng sơ liẹu vê khơp nơi, là thông só quan trọng của khớp nơi.

Ửng với mỡi trị só mơmen xoân, khợ nơi có các cõ đường kinh trong khác nhau để có thể lắp vào các trục thích hợp. Sở di phải làm như vậy vi nhiêu khi các trục chịu mômen xoán nhu nhau nhưng mômen uón lại khác nhau và trục đượe ché tạo bằng nhiêu loại vật liệu, do đó đường kính trục lơn bé không giơng nhau.

Các kích thước chủ yêu của các loại khớp noi cho trong các sách vé khớp nơi. Chọn khớp nới phải dựa vào điêu kiện làm viẹc cụ thể của máy hoậc co cấu. Khâu yếu nhất của khớp nơi đã chọn cần được tính toán kiồm nghiẹm. Phương pháp tính phụ thuộc loại tải trọng tác dụng và điêu kiẹn làm việc của khóp nđi.

Khớp nới được chọn theo mômen tính toán T_{1} và phải thỏa mãn điếu kiẹn :

$$
\begin{equation*}
T_{t}=K \cdot T \leqslant T_{\text {bảng }} \tag{18-1}
\end{equation*}
$$

trong đơ: T - mômen xoấn danh nghia ; K - hệ sơ chê đọ làm việc, xem bảng 18.1 (trường hợp máy được dẫn động bằng động cơ điện).

Bảng 18.1
Hé a 8 ché do tải trong K

Loại máy	K
Băng tải, quạt gió, máy cát kim loại có chuyễn động liên tục Xích tài, vít tải, máng cào, bơm ly tam, máy dệt Bơm pittông, máy nén khí kiêu pittơng, máy nghiên, máy búa, máy cát tấm, máy cán thép, máy bào Guông tải, cân trục, thang may	$\begin{gathered} 1,2 \div 1,5 \\ 1,5 \div 2 \\ 2 \div 3 \\ 3 \div 4 \end{gathered}$

18.2. NÓI TRUCC CHÅT

Nơi trục chặt dùng đê nơi cứng các trục cơ đường tâm cùng trên một đường thả̉ng và không di chuyến tương đơi đơi với nhau. Khác vơi các loại nơi trục khác, nơi trục chật không

Hinh 18.1 những truyen mômen xoăn mà còn ∞ thé truyén mômen uơn và lực dọc trục. Tuy nhien, đ® giảm bơt mômen uôn tác dụng vào nơi trục, nên đạt nơi trục gein σ true hoạc ơ chờ ứng vơi biêu đ6 momen uơn tren trục qua so khong, nêu như không ành hưởng đôn các yeu câu khác.

18.2.1. Nói true ong

Nठi trục ơng là kiếu nơi trục chật đơn giàn nhất, câu tạo bời môt ơng thép hoạ̣c gang, lông vào đoạn cuới cửa hai trục và ghép vofi trục bàng then (hình 181 a) hoạc ch σ (hinh 18.1b) v.v...

Nơi trục ơng có ư điếm là ché tạo đơn giản, kich thước đường kính nhó, song có nhược điếm là láp ghép khó khăn vì phải di động trục phương dọc trục một khoáng khá lớn. Do đơ nới trục ơng chỉ dùng để nới các trục có đường kính không quá $60 \div 70 \mathrm{~mm}$.

Sau khi chọn kích thước nời trục theo các công thức kinh nghiệm, cho trong các tài liẹu vế khớp nới, trong trương hợp cần thiết thl kiểm nghiệm chớt (hoạ̣c then) theo độ bễn dập.

18.2.2. Nói true dia

Nơi trục dia là kiểu nơi trục chạ̣t chủ yếu, gốm hai đila có mayo, mới đỉa lấp lên đoạn cứi mỡi trục bàng then và bảng độ doi rời dùng bulơng ghép hai đla vơi nhau (hỉnh 18.1c). Bulông được láp có khe hở (nửa dưới của hình 18.1 c) hoạ̃c lấp có độ đôi (nửa trên hỉnh 18.1 c). Trường hợp dùng bulông láp có khe hơ, mômen xoán được truyến từ đỉa này sang đỉa kia nhờ lực ma sát sinh ra trên bê mặt ghép hai dia do lực xiế của bulông gây nên. Trường hợp dùng bulông láp không có khe hở, mômen xoân truyên trực tiếp qua bulông và bulơng chịu ựng suăt cát và ựng suất dập. Dùng bulơng láp không có khe hở, kich thước nới trục nhỏ gọn hơn cho nễ cách này được dùng nhiếu hơn.

Dể giảm bớt kich thước của nới trục, bulông lấp không có khe hở thường được ché tạo bảng thép cơ đợ bến cao như thép CT5. Đía được làm bàng gang, thép đúc hoạc thép rèn, thép cán.

Nơ trục đila đự̛̣ dùng nhiếu trong các ngành chế tạo máy. Ưu điếm của nó là cấu tạo đơn giản và kich thước không lớn lám.

Khi dưng bulông lấp có khe hở, bulơng được tính theo lực xié̛t cân thiét V dể tạo nên lực ma sát đảm bảo cho nơi trục có thé truyôn được mômen xoán.

Khi dùng bulơng lấp không cớ khe hở, bulơng được tinh theo điêu kiện bên cát (xem chưong 8).

18.3. NOI TRUC BÙ

Noi trục bù dùng để nơi các trục bị nghiêng hoạc bị lệch đơi với nhau mợt khoáng nhó do chế tạo, láp ghêp thiéu chính xác hoạc do trục bi biên dạng đàn hơi. Những sai lệch vi trí tương đơi giû̃a cạc trục (gọi chung là đọ lệch trục) có thễ biếu thị bàng : đọ lệch dọc trục δ_{a}, đọ̣ lệch tâm δ_{r}, độ lệch góc α hoạc lệch tờng hợ δ_{a}, δ_{r} và α (hinh 18.2)

Hinh 18.2
Nếu dùng nơi trục chặt để nới các trục, sự lệch trục sẽ tạo nên biên dạng σ và trục, do đó gây nên tải trọng phụ. Độ lệch trục càng lơn, tải trọng phụ càng lớn. Vl vậy khi dùng nờ trục chặt vị trî tương đới giữa các trục cẩn phải đảm bảo chính xác cao. Dể giả̉m bớt yẹ̛u cầu vế độ chính xác vị trí tương đới giữa các trục và giảm tải trọng phụ sinh ra trong ở và trục, cơ thể dùng nới trục bù.

Cũng cần chú ý là dùng nối trục bù, ổ và trục vẫn phải chịu một ít tải trọng phụ do sự phân bố tải trọng không đếu trong nối trục gây nên.

Nhờ khả năng di động giữa các chi tiết cứng trong nối trục bù, nối trục có thể bù lại những sai, lệch vê̂ vị trí tương đối giữa các trục*.

Các kiểu nối trục bù được dùng nhiếu hơn cả là : nối trục răng, nối trục xích, nối trục chữ thập và nối trục bản lế.

18.3.1. Nối trục răng

Nối trục răng gồm hai ống trong 1 có răng phía ngoài và hai ống ngoài 2 có răng phía trong lồng vào nhau (hình 18.3). Mỗi ống trong lắp chặt với đoạn cuối mối trục. Hai ống ngoài ghép chặt với nhau bằng các bulông 5 . Khi làm việc các răng của ống trong và ống ngoài ăn khớp với nhau, nhờ đó truyển được mômen xoắn. Để giảm ma sát giữa các răng, cho dầu vào khoảng trống trong hai ống. Răng nối trục có dạng thân khai, góc ăn khớp thường bằng 20°. Răng thường được dịch chỉnh để độ bển răng của ống trong và răng của ống ngoài bằng nhau.

Để có thể bù lại độ lệch trục, các răng được

a)

Hình 18.3 chế tạo có khe hở cạnh răng và đỉnh răng có hình cung tròn (hình 18.3 b) hoặc tốt hơn nữa, răng được chế tạo có hình trống (hình 18.3 c), giữa mặt mút của các vành răng ống trong với mặt mút phía trong của các ống ngoài và giữa hai mặt mút đối diện nhau của hai ống trong có khe hở dọc trục tương đối lớn.

Nối trục răng được dùng rộng rãi, nhất là trong ngành chế tạo máy hạng nặng, vì có những ưu điểm như khả năng tải lớn, làm việc tin cậy mà kích thước tương đới nhỏ gọn, vì có nhiếu răng cùng làm việc đồng thời, có thể làm việc với vận tốc cao...

Độ lệch tâm, độ lệch góc và độ lệch tổng hợp cho phép được xác định theo điếu kiện là góc làm bởi đường tâm ống trong với đường tâm ống ngoài không quá 30^{\prime}. Khả năng tải của nối trục càng giảm khi góc lệch này càng lớn.

Vật liệu chế tạo các chi tiết của nối trục răng là thép $45,40 \mathrm{X}$ rèn hoặc thép đúc 45λ. Để giảm mòn, răng của ống trong được nhiệt luyện có độ rắn không thấp hơn 40 HRC, răng ống ngoài cớ độ rắn không thấp hơn 35 HRC . Đới với nối trục làm việc với vận tốc thấp (v $<5 \mathrm{~m} / \mathrm{s}$) độ rấn của răng có thể dưới 35 HRC .

Nối trục răng được tính toán theo điếu kiện hạn chế mòn răng. Ta qui ước áp suất p phân bố đếu trên bế mặt tiếp xúc của các đôi răng.

$$
\begin{equation*}
\mathrm{p}=\frac{2 \mathrm{KT}}{\mathrm{AZd}} \leqslant[\mathrm{p}] \tag{18-2}
\end{equation*}
$$

trong đơ Z - số răng của mối ống (trong hoặc ngoài) ; $\mathrm{d}_{\mathrm{k}}=\mathrm{Zm}$ - đường kính vòng chia của vành răng khớp nối ; m - môđun ăn khớp ; $\mathrm{A}=\mathrm{bh}$ - diện tích tính toán

[^6]của bê mặt làm việc của răng ; b - chiêu dài răng (hình 18.3) ; h - chiếu cao làm viêc của răng, thường lây $h \approx 1,8 \mathrm{~mm}$; $[\mathrm{p}]$ - áp suăt cho phép, $[\mathrm{p}]=10 \div 12 \mathrm{MPa}$ đơi với răng được nhiệt luyện cơ độ rấn $\mathrm{HRC}>40,[\mathrm{p}]=3,5 \div 4,5 \mathrm{MPa}$ đơi với răng co đọ rán $\mathrm{HB}=280 \div 320$.

Từ điếu kiện (18-2) ta có công thức kiểm nghiệm

$$
\begin{equation*}
p=\frac{2 K \cdot T}{0,9 d_{k}^{2} b} \leqslant[p] \tag{18-3}
\end{equation*}
$$

Đật $\psi=\mathrm{b} / \mathrm{d}_{\mathrm{k}}$ và biên đởi cờng thức (18-3) ta có công thức thié́t ké nơi trục răng

$$
\begin{equation*}
d_{k} \geqslant \sqrt[3]{\frac{K T}{0,9 \psi[p]}} \tag{18-4}
\end{equation*}
$$

Hệ số chiếu rộng vẩnh răng ψ đơi với nơi trục rẫng cơ thê lây trong khoảng $0,12 \div 0,16$. Lây ψ lớn quá sê làm tăng sự phân bơ không đếu tải trọng trên răng.

Theo trị só đường kînh vòng chia d_{k}, sau khi chọn só răng Z, thường $Z=30 \div 80$ răng (trị số lơn dùng cho nơi trục chịu tải lơn), ta tính được môdun, quy tròn theo trị sర tieu chuẫn.

Hiệu suât của nбi trục răng $\eta=0,985 \div 0,995$. Tải trọng phục F_{k} do khớp nơi sinh ra (vì tải trọng phấn bó không đêu giừa các răng) gây thêm ứng suất uốn trong trục. Trên cơ sở thực nghiệm tìm được $F_{k}=(0,15 \div 0,2) F_{t}$ với $F_{t}=2 K T / d_{k}$, quy ưoc gọi là lự vòng trong nối trục.

18.3.2. Nói trụe xích

Nơi trục xîch gôm hai đỉa lấp chặt với trục, số răng hai đỉa bằng nhau, phía ngoài quân chung một vơng xich (hỉnh 18.4). Để tránh bưi bẩn và đảm bảo bôi trơn tớt, nơi trục được che bàng mọt vờ kin. Trong nơi trục xich thường dùng xich ông con lân mọt dãy cũng co khi dùng xich ơng con lăn hai dãy hoạc xich răng.

Hinh 18.4

Hinh 18.5

Nhờ có khe hở giữa xich và răng đia, nơi trục cho phép các trục co thễ nghiêng với nhau một gơc đến 1° và lệch tâm đến $1,2 \mathrm{~mm}$.

Cấu tạo của nôi trục xich tương đới đơn giản, dùng xich là tiớt máy dược chế tạo săn theo tiêu chuẳ, kích thước nới trục không lơn, lấp ghép không đòi hỏi phải di động trục dọc theo chiêu trục.

Vì có khe hở giữa xich và răng đỉa cho nên không dùng nới trục xich trong các truyên động quay hai chiêu hoạ̣c có tải trọng va đạ̣p mạnh.

Tûy theo trị só mômen xoán tính toán T_{t} cơ thế tra các tài liẹu khớp nơi dế tìm cỡ nới trục thich hợp. Dạng răng đỉa xich lây theo tiêu chuẩn.

18.3.3. Nới trục chứ thập

Nơi trục chữ thập (còn gọi là nới trục Ônđam) gồm hai nửa nối trục 1 và 2 có rãnh thả̉ng và đỉa giữa 3 có gờ ở hai mặt bên, hai gơ này vuông góc với nhau (hình 18.5). Hai nửa nới trục ghép chặt với trục, còn gò đỉa giữa thỉ ăn khớp với rẫnh của các nửa nơi trục, nhờ đó nói trục truyên được mômen xoán từ trục này sang trục kia.

Công dụng chủ yêu của nơi trục chū thập là đê nơi các trục cơ đọ lệch tâm (không quá 0,05 đường kính trục), nhưng nhờ giữa các nửa nơi trục và đĩa giữa có khe hở dọc trục cho nên cūng có thê nới các trục cơ đọ lệch dọc trục hoạc đọ lệch gớc nhỏ (dưới 1°).

Khi trục quay, tâm đia giưa chuyển động theo một quy đạo tròn, đường kính vòng tròn là khoảng lệch δ_{r} (độ lệch tâm) giữa hai trục. Trục quay được một vòng thì tâm dia quay hai vòng. Do có sự trượt tương đơi giữa dia với hai nửa nói trục và khi truyên mômen xoắn giữa gò và rẫh trong nới trục chịu áp suất (ưng suất dập) cho nên xảy ra hiện tượng mòn gờ và rãnh. Cường đọ mờn tăng lên khi tăng độ lệch trục, sठ vòng quay của nối trục và áp suắt giữa gờ và rẫnh. Để giảm bớt mài mòn, cẩn thường xuyên bơi trơn nới trục (lơ 4 hinh 18.5) và hạn ché áp suất giữa gờ và rãnh.

18.3.4. Nói trục bàn lè

Nơi trục bản le (hình 18.6) dùng đê nới hai trục có đường tâm nghiêng với nhau một gớc nào đơ dưới $40 \div 45^{\circ}$, hoạác góc giữa hai trục thay dới khi máy làm việc. Nối trục bản lế gớm hai nửa nới trục A và B cơ hình cái chạc, nới với nhau bằng bộ phận chữ thạp C . Bọ phận chữ thạp cơ thê chuyên đọng tương đơi đơi vơi chạc nhờ hai cạ̣p bân lé. Vi có hai cạ̣p bán lê vuông gớc với nhau nên nơi trục có thé truyên chuyến đồng quay giữa các trục có góc nghiêng lốn.

Hình 18.6
Nếu dùng nơi trục kép có thê tăng găp đơi gớc nghiêng cho phép giữa hai trục hoặc có thể truyên chuyên động giữa hai trục song song và lệch nhau một khoảng tương đơi lớn.

Nơi trục bản lế được dùng khi cần :

- bù lại sự không chinh xác vé vị trí tương đơi của các bộ phận hoạc do bién dạng của bệ máy (trong các máy vận chuyễn v.v...)
- truyên chuyến động giữa các trục có thay đơi vị trí tương đơi (trục máy cán, trục chính máy khoan nhiêu trục, dầm máy phay v.v...)

Khi nới trục làm việc, bán lê chịu áp suắt lợn và có trượt cho nên cớ thể bị mòn, dập. Do đó bản lế cấn cơ độ rấn cao ($\mathrm{HRC}=50 \div 60$), đự̛̣c bồi dầu và che bụi.

Kích thước nơi trục bản lé có thể tra theo trị só mômen xoăn cho trong các tài liệu vê nơi trục. Cân kiếm nghiệm độ bên uớn của chớt và áp suất trong bản lê.

18.4. NỐI TRỤC DÂN HỒ

Nơi trục đàn hỡi gồm hai nửa nơi trục láp chặt với hai trục, ó giữa có bộ phận đàn hời nới chúng lại với nhau.

Nhờ có bộ phận đàn hôi cho nên nới trục đàn hời có thê làm được các nhiệm vụ sau :

- Giám va đập và chấn đợng, v̀ bọ phận đàn hới cớ thể tích lũy và tiêu thụ cơ năng do va đập, chấn động sinh ra.
- Đế phòng cộng hưởng do dao động xoán gay nên.
- Bù lại độ lệch trục (làm việc như nới trục bù).

Độ cứng là một trong những đạ̣c tính chủ yếu của nơi trục đàn hởi ký hiệu là C_{φ}

$$
\begin{equation*}
\mathrm{C}_{\varphi}=\frac{\mathrm{dT}}{\mathrm{~d} \varphi} \tag{18-5}
\end{equation*}
$$

trong đơ T - mơmen xoân truyến qua nới trục ;
φ - goóc xoán của nơi trục, là góc xoay tương đơi giữa hai nửa nơi trục (trong mật phả̉ng quay của trục) khi chịu mômen T.
Tùy theo đọ cứng C_{φ}, nơi trục đàn hơi được chia làm hai loại nơi trục có độ cứng không đơi và nđ̛i trục có đọ cứng thay đơi. Trên hình $18-7$ trinh bày đường đặc tính độ cứng của nơi trục, đường thả̉ng 1 biếu thị độ cứng không đời, đường cong 2 - độ cứng thay đơi.

Đơi với nời trục cơ độ cứng không đơi

$$
\begin{equation*}
\mathrm{C}_{\varphi}=\frac{\mathrm{T}}{\varphi}=\text { const } \tag{18-6}
\end{equation*}
$$

Nói trục có độ cứng thay dời bao gôm các no i trục cơ bợ phận đàn hồi làm bà̀ng vật liệu không kim loai như cao su, da v.v... (các vật liệu nảy không tuân theo định luạt Húc) và các nói trục co bộ phạn đàn hới bàng kim loại nhưng biến dạng phụ thuộc vào kết cấu.

Hình 18.7

Hình 18.8

Ưu điểm của nơi trục cơ độ cứng thay đơi là co thê ngăn ngừa được cợng hường do dao động xoân gây nên. Khi tân só dao động của lực kfch thích trùng vời tần sớ dao đợng riêng của hệ thơng, biên độ dao động cũng không tăng quá lớn, vì khi biên độ dao động tăng thì độ cứng của hệ thơng cūng thay đơi, do đó thay đới tân só dao động riêng và hệ thớng tránh được cợng hưởng.

Khả năng giảm chân cūng là một đậc tính quan trọng của nơi trục đàn hơi. Khả năng giảm chăn là khả năng tích lūy và tiêu thụ cơ nàng do chấn động gây nên. Co năng được tích lũy trong bộ phạn đàn hơi và bién thành nhiệt nhờ ma sát ngoài và ma sát trong của bộ phận đàn hơi. Trong các nơi trục lò xo thép, ma sát ngoài cơ tác dụng quyết định, còn trong các nơi trục cơ bộ phận đản hơi bằng vật liệu không kim loại, ma sát trong của vật liệu không kim loại cơ tác dụng quyết định.

Khả năng giảm chấn của nới trục được đạ̣c trưng bởi trị số năng lượng được nới trục tiêu thụ không khả nghịch trong mợt chu kỳ chịu tải và thôi tải. Trên hình 18.8 đường OA 1 chỉ quá trình bién dạng khi chịu mômen xoán T_{1} và đường 1 BO - khi thôi tải ; diện tích vòng trễ OA1BO chl năng lượng được tiêu thụ bởi nơi trục.

Trong ché tạo máy dùng nhiêu kiểu nơi trục dàn hôii. Tùy theo vật liệu làm bộ phận đàn hới, có thé chia nơi trục đàn hời ra làm hai nhơm : nơi trục có bợ phận đàn hới bằng kim loại vă nới trục cơ bọ phận đàn hồi bằng vật liệu không kim loąi.

18.4.1. Nói trục lò xo xoân óc trụ

Cấu tạo của nơi trục lò xo xoán ơ trụ trinh bày trên hỉnh 18.9.
NOi trục gôm vành 1 có gò trong 2 và mayo 3 có đía 4 , gờ được láp vào trong rảnh vòng của đĩa. Gờ và đĩa được khoét đé láp các lò xo 5 và chớt tựa 6 . Khi chưa lắp lò xo và chớt tựa, vành ngoài cơ thê xoay tự do đơi với đla. Mặt bên của nơi trục được che bởi vòng che 7 cơ tác dụng ngăn không cho lo xo và chớt tựa bật ra ngoài va che bụi.

Đâu chớt tựa co be mật nửa hỉnh trụ tròn. Khi nới trục chưa chịu tải, lo xo đã có lực nén ban đâu F_{o} sinh ra do đạt lò xo vào nơi trục, vi vạy chúng ép các chớt tựa tỳ vào cà đla lân gơ.

Hinh 18.9

Hinh 18.10

Khi nơi trục chịu tải trọng, gò xoay trong rănh đifa lảm lò xo bị nén thêm. Lúc nảy trong mठi 1δ khoét một chớt tựa chil tỳ vào gò, còn chót kia chi tỳ vào dia.

NĜi trục lo xo xoán ớc trụ dùng làm tiét máy đản hơi đễ nơi bánh răng hoạ̣c đia xích vói trục rất thích hợp.

Trong trương họp này nơi trục có câu tạo tương tự như cáu tạo bánh răng (hoạc đỉa xfch), vành ngoải của nơi trục là vành bánh răng (hoạ̣c đia xích). Để giảm bớt mài mòn các chi tiết, cần bôi trơn các bê mật ma sát trong nơi trục.

Nơi trục lò xo xoấn ớc trụ cũng được dùng dể nới các trục, tuy nhiên, vê mặt cáu. tạo của nới trục cần có sự thay đới chút it.

Đạc tính của nơi trục lò xo xoấn ớc trụ được trinh bày trên hỉnh 18.10 .
Vì lò xo chịu lực nén ban đâu F_{o} cho nên nđi trục làm việc như nơi trục cứng (không đàn hời) khi mômen xoán tác dụng lên nơi trục chưa vượt quá trị sớ.

$$
\mathrm{T}_{\mathrm{o}}=\mathrm{F}_{\mathrm{o}} \mathrm{r} \cdot \mathrm{Z}
$$

trong đó \mathbf{r} - khoảng cách từ đường tâm lò xo đến tâm nới trục ; Z - số lò xo.

Nếu mômen xoán T càng tăng thl góc xoán φ càng tăng cho tới khi $\varphi=\varphi_{\text {max }}$ chớt tựa trong môi lố sẽ tỳ vào nhau ; lúc này mômen xoán có trị só $\mathrm{T}_{\text {max }}$. Nếu tiếp tục tăng tải trọng đé $T>T \max n \not \subset i ~ t r u ̣ c ~ l a ̣ i ~ l a ̀ m ~ v i e ̣ ̂ c ~ n h u ̛ ~ n o ̛ i ~ t r u ̣ c ~ c u ̛ ́ n g . ~$

Kích thước lò xo được xác định theo phưong pháp trình bày trong chưong lo xo, có xét đến kết cấu nơi trục. Để tránh xảy ra va đập trong nơi trục khi cơ dao động, khi thiết kế lo xo phài chú ý đảm bảo điéu kiẹn $0<\varphi<\varphi_{\max }$

18.4.2. Nói trụ răng lò xo

Nối trục răng lo xo cấu tạo bời hai nửa nơi trục 1 và 2 láp chặt vỡi trục (hinh 8.11), trên mỡi nửa nơi trục co khoàng $50 \div 100$ răng, giūa các răng 3 gài lò xo dẹt 4 uơn ngoàn ngoèo. Phia ngoài lò xo và răng có vó che 5 , trong vó dựng dàu bôi trơn.

Vi tải trọng cân truyên được phân bơ trên nhiéu đoạn lò xo tỳ vào các răng, cho nên kích thước nớ trục tương dơi gọn. Nơi trục răng lò xo cơ thê bù lại dộ lệch dọc trục $4 \div 20 \mathrm{~mm}$, đợ lệch tam $0,5 \div 3 \mathrm{~mm}$ và độ lệch góc dưới $1^{\circ} 15^{\prime}$.

Hinh 18.11

Hinh 18.12

Răng của nới trục được ché tạo theo hai kiểu (hinh 18.12 a và b). Dạng răng đầu (hình 18.12a) dùng cho nới trục có độ cứng không đởi : khoảng cách 2 a giữa các điêm tỳ của các rāng với lò xo là không thay đới và không phụ thuộc tải trọng tác dụng
vào nđi trục. Dạng rañg thứ hai (hỉnh 18.12b) dùng trong nơi trục co độ cứng thay đơi. Trong nơi trục này, khi tải trọng tăng lên, lò xo bị uơn nhiêu hoon, chiếu dâi tiêp xúc giữa lò xo và răng tăng lên, khoảng cách 2 a giữa các đoạn tiêp xúc của các răng (hình 18.12b) giảm dân, đọ cứng cưa nđ̛i trục tǎng lên. Khi bị quá tải, lò xo sê tiếp xưc với răng tại điếm mút, nđ̛i trục làm việc nhự nơi trục cứng (không nên cho nơi trục làm việc trong chế đọ tải trọng này).

Kích thươc chinh của nđí trục đực chọn theo trị so mômen xoán tính toán. Sau đó kiếm nghiệm ứng suất sinh ra trong lò xo và trong râng.

18.4.3. Nơi trục chót dàn hôi

Cấu tạo của nơi trục chб̛ đàn hơi cung tương tự như nбi trục đỉa, gồm hai đia có mayo lấp trên doạn cư̛i môi trục, nhưng khơng dùng bulơng để ghép nơi trục và truyên mômen xoân mà dùng các chơt 2 đưọ̣c bọc ơng (hoạ̣c các vòng) đàn hơi bàng cao su 1 (hinh 18.13).

Đoạn chớt có phần tử

Hinh 18.13 đàn h ${ }^{\text {oin }}$ được xuyen qua 1δ hinh trụ cưa một đía, còn phân chơt hình côn đấu coo ren thi xuyen qua 16 con của dia thứ hai rôi vạn chặt bằng đai oc.

N 6 í trục chớt đàn hời cau tạo đơn gián, dê ché tạo, giá rể nên được dùng nhiêu, nhất là trong các bộ truyên cón mômen xoán nhỏ và trung binh được dẫn động bằng động co điện. Nới trục cho phép hai trục co thê lệch dọc trục $\delta_{\mathrm{a}} \simeq 1+5 \mathrm{~mm}$; lệch $\operatorname{tam} \delta_{r}=0,3 \div 0,6 \mathrm{~mm}$ và lệch góc $\alpha=1^{\circ}$. Noí trục co thể bù độ lẹch dọc trục nhờ sự di đọng tương đđoi giữa bộ phạn đàn hơi vđii nưa nơi trục, bù độ lệch tam và đọ lệch gơc nhờ vòng đàn hơi cơ thẻ̛ biên dạng nén.

Tuy nhiên cân chú ý ràng trương hợp hai trục lệch nhau, tải trọng sé phân bơ khơng đêu giữa các chơt, do đơ vòng cao su bị mòn rất nhanh ; mặt khác trục lệch sé tạo nên tài trọng phụ, hương tâm, gay uơn trục và tác dụng lên ó. Do đó, nên co gâng bào đảm điêu kiện đơng tâm đơi vơi các trục đự̛̣c nơi.

Kich thưđc chinh của nơi trục chot đàn hơi được chọn theo trị só mômen xoán tính, sau đơ kiếm nghiệm ựng suât dập sinh ra giûa chđ̛́ vơi vòng cao su và ứng suât uớn trong chбt.

Giả thiêt ững suất dạp σ_{d} phan bo dêu trên các chđ̛́t, ta có dieu kiẹn

$$
\begin{equation*}
\sigma_{\mathrm{d}}=\frac{2 \mathrm{KT}}{\mathrm{Zd}_{\mathrm{k}} \mathrm{~d}_{\mathrm{c}} 1} \leqslant\left[\sigma_{\mathrm{d}}\right] \tag{18-7}
\end{equation*}
$$

trong đó Z - sớ chơt ; d_{k} - đường kinh vòng tròn qua tam các chơt; d_{c} - đữ̀ng kính chớt ; l - chiêu dài phần tử đàn h hôi ; $\left[\sigma_{\mathrm{d}}\right]$ - ứng suât dập cho phép cưa ơng cao su, co thê láy $\left[\sigma_{\mathrm{d}}\right]=1,8 \div 2 \mathrm{MPa}$.

18.4.4. Nố trục vó dàn hôi

Nói trục vó đàn hơi góm các nửa nơi trục 1 và 2 được liên kết với nhau nhờ vó bọc đàn hơi 3 và các vòng kẹp 4 (hình 18.14). Vỏ bọc đản hôi 3 làm bàng cao su, thường được gia cố thêm các sợi bện. Nới trục có khả năng giàm chấn tớt và cơ thể bù lại các độ lệch trục trong phạm vi khá rộng ; đọ lệch dọc trục đên 11 mm , độ lệch tâm đên 5 mm và độ lệch gớc đên $1^{\circ} 30^{\prime}$. Tuy nhiễn, kich thước hương kính của nới trục tương a夭i lán.

Các kích thước chủ yếu của nơi trục được chọn theo momen xoán tính toán.
Dạng hỏng chủ yêu của nới trục là vỏ bọc đàn hơi bị phá hỏng tại chỡ kẹp. Vó bọc được kiếm nghiệm theo điếu kiện bên cát tại tiết diẹn kẹp

$$
\begin{equation*}
\tau=\frac{2 \mathrm{KT}}{\pi \mathrm{D}_{1}^{2} \delta} \leqslant[\tau] \tag{18-8}
\end{equation*}
$$

trong đó D_{1} - đường kính vỏ bọc tại tiết diện tính toán ; δ - chiêu day vó bọc ; $[\tau]=0,4 \mathrm{MPa}$ - ứng suất cắt cho phép.

18.5. LY HƠP

Dùng ly hợp, cơ thể nơi hoạ̣c tách các trục trong bất kỳ lúc nào.
Đới với ly hợp, cơ những yều cầu sau đây :

- Đơng, mơ nhanh và nhẹ nhàng.
- Dóng ly họp êm.
- Lam việc tin cạy sau khi dong.
- Mòn và sinh nhiẹt it.
- Điêur chinh đơn giản.
- Khi đơng ly hơp bẳng tay, lự cân thiêt đê đơng không quá lơn.
- Với mơmen xoán cho trướ, ly họp có kich thước nhơ nhất.

Tuy nhiên cũng nên chú ý rà̀ng, ly hơp không thế làm nhiẹm vụ bù lại độ lệch trục. Khi dùng ly hợp cần bào dảm đọ đơng tâm giữa các trục.

Tùy theo nguyên lý làm việ, có thê chia ly họp ra làm hai loại : ly hợp ăn khớp, và ly họp ma sát.

18.5.1. Ly hqp an khóp

Ly hợp ăn khớp làm việc dựa trên sự an khơp giữa các vau hoạc các răng của các nửa ly họp.

1. Ly họp váu

Ly hợp vâu gớm hai nửa ly hợp có vâu ơ mạ̣t bên (hinh 18.15), nửa ly hợp lâp chặt trên đoạn cuơi cưa mợt trục, còn nửa ly hợ kia (di động) lá̛p trượt trên doạn cuơi của trục thứ hai nhờ then hoạc then hoa. Khi đớng ly hợp, vấu của chúng gài vào nhau, qua đơ chuyển đợng quay và mômen xoân được truyên từ trục này sang trục kia. Đế giảm mòn cho cơ câu đơng, nửa ly hợp di động nên lấp trên trục bị dả̃n.

Ưu điếm của ly họ̣p vấu là kich thước nhỏ và không có chuyến động quay tương đ̛́i giữa hai trục (so với ly hợp ma sát). Nhược điểm là khi nơi hai trục có vận tớc chênh lệch nhiêu sê sinh ra va đập mạnh, thậm chí cơ thể phá hỏng ly họp. Vl vậy
không nên dùng ly họ̣p vâu trong trường hợp cẩn đơng cơ cấu khi cơ tải và vận tốc tương đơi v giữa các trục lớn (v không đượe quá $1 \mathrm{~m} / \mathrm{s}$).

Hình 18.14

Hinh 18.15

Hînh dạng tiết diện vấu được dùng nhiếu hơn cả là hình chữ nhật, hình thang cân và hình thang lệch (hình 18.16). Dùng vấu tiét diện hình chữ nhật (hình 18.16a) đòi hỏi các nửa ly hợp phải có vị trí tương đói chính xác khi đơng khớp. Ngoài ra, trong ly hợp không tránh khỏi có khe hờ cạnh bên, gây nên va đập khi thay đởi chiếu quay. Khe hở tăng lên khi vấu bị mòn. Vấu hình thang (hình 18.16 b , c) không yêu cầu vị trí chính xác của các nửa ly họp khi đóng ly họp ; các khe hở cạnh bên được bù nhờ thay đới chiếu sâu gài vắu. Prôfin hỉnh

Hinh 18.16 thang cân dùng khi quay hai chiêu, prôfin hình thang lệch dùng khi quay một chiéu. Trong ly hợp vâu hình thang xuắt hiện lực dọc trục F_{a} (hinh 18.16b), có xu hương tách các nửa ly hợp, gây khó khăn cho đóng ly hợp : Góc prôfin α thường lấy bằng $2 \div 5^{\circ}$ để bảo đảm tự hã́m.
Mòn các vấu là dạng hỏng chủ yêu của ly hợ vấu. Dê hạn chê mòn vấu, cân kiếm nghiệm áp suât p trên bê mặt tiêp xúc của vấu. Giả thiết tải trọng phân bơ dếu cho các vâu, ta có điếu kiện.

$$
\begin{equation*}
p=\frac{2 K T}{Z_{1} \mathrm{bh}} \leqslant[p] \tag{18-9}
\end{equation*}
$$

trong đó Z - só vấu trên nửa ly ḥ̛̣’; b và h - chiếu rộng và chiếu cao tính toán của vấu ; D_{1} đường kính trung binh của ly họ̣p (hình 18.15) ; [p] - áp suất cho phép.

Để giảm mòn vấu, cấn tôi vấu đạt độ rấn bế mạ̣t $45 \div 60 \mathrm{HRC}$. Ly họp vấu được chế tạo bàng thép $15 \mathrm{X}, 20 \mathrm{X}$, vâu được thấm than hoặc chế tạo bà̀ng thép $30 \mathrm{XH}, 40 \mathrm{X}$ tôi thê tích. Áp suất cho phép [p] trong các trường hợp này :
$[\mathrm{p}]=90 \div 120 \mathrm{MPa}$ - đóng ly hợp khi trục không quay ;
$[\mathrm{p}]=50 \div 70 \mathrm{MPa}$ - đóng ly hợp khi trục quay chạ̣m ;
$[\mathrm{p}]=35 \div 45 \mathrm{MPa}$ - đóng ly hợp khi trục quay tương dơi nhanh.

2. Ly hơp räng

Ly họp răng (hỉnh 18.17) co cấu tạo tưởng tự nhu nới trục răng (hinh 18.3), cách làm việc và nguyên tác tính toán cũng vậy. Ly hợp đự̛̣ đơng mở bằng cách di chuyên ơng 1 dọc trục dẫn 2, ơng lắp với trục bà̀ng then 3 . Đé giảm mòn răng trong ly hợ có đớ dầu và được che kín bà̀ng đệm lớt 4 . Vòng 5 đâu trục có tác dụng giới hạn hành trình mở (ngát) ly họp.

Hình 18.18

Hinh 18.17

Người ta cŭng düng ly hợp răng không có các ơng ngoài 6, như cấu tạo trên hinh 18.18, một nựa ly hợp có răng trong ăn khơp vái nửa ly hợ có răng ngoài. Cá́u tạo kiếu ly hợp răng này chil khác với ly hợp vấu phía trên ơ chơ răng không bớ trí ơ mặt mút mà phân bo trên mặt trục của ly hợ và có dạng thân khai. Răng được vát mép để dễ đóng (gài) ly họp.

Kích thước ly hợp rãng cơ thê chọn trong các bảng vê nơi trục rã̉g. Răng dược kiếm nghiệm vế áp suât để hạn chế mòn, trị sơ áp suât [p] cho phép lây như đơi với ly hơp vấu.

Đê tránh sinh ra va đập khi đóng ly hợp răng, hiện nay dùng khá rộng răi khớp hòa dơng bộ (chăng hạn trong hộp sơ của $0-\mathrm{to}$). Nhà có khớp hòa đồng bộ, tớc đọ trục bị dã̉n được tãng dần cho đớn khi đơng bô vợi tớ đọ trục dăn, lúc đó hai trục mới nơi hẳn với nhau.

Cáu tạo của một kiếu khớp hòa đơng bô đơn gián dùng phơi hạ̣ với ly hợp răng được trịh bày trên hình 18-19. Ly họp côn ma sát làm nhiẹm vụ của khớp hòa đồng bợ. Vành ngoài của nửa ly họp côn ma sát 1 có răng, luôn ăn khớp với vành răng 2 của ly hơp răng. Khi di chuyến vành răng 2 theo dọc trục vé ben phải (hoạc ben trai), sê truyên lực dọc trục qua bi lên nủa ly hợ con ma sát 1 và kéo nưa ly ḥ̛p này ép vào nựa ly hợp côn ma sát kia (hình 18-19a). V1 khi đóng ly họp ma sát có sự trự̛̣ tưong đới giữa hai nửa ly họp, cho nen tớc độ tiét máy bị dẫn tăng lên dân dần. Khi tớc độ tiết máy bị dẫn (ó đây là bánh răng) tăng lên bà̀ng với tớc độ trục dā̃n,

Hình 18-19 tiép tục di động vành răng 2 sang bên phải đé ăn
khớp với nửa ly hợp răng, tù lúc này ly hợp răng bắt đẩu làm việc (hỉnh $18-19 \mathrm{~b}$).
Để tớc độ bánh răng bị dả̉n kịp tăng bằng tớc độ trục dẫn, cần di động từ từ vành răng 2 .

18.5.2. Ly hợp ma sát

Ly hợp ma sát truyễn mợmen xoân nhờ lực ma săt sinh ra trên bế mặt tiếp xúc giữa các nửa ly hợp. Khi đóng ly họp, mômen xoân tăng dần theo mức dộ tăng lực ép trên bê mặt ma sát. Vl vậy, so với các loại ly hợp khác, ly hợp ma sát có những uu diém sau :

- Cho phép đơng ly hợp trong bá̛t kỳ lúc nào, dù vận tớc trục dẫn chênh lệch nhiêu với vận tớc trục bị dẫn.
- Bảo đảm đóng ly hợp êm, không có va đập.
- Có khả năng thay đởi vận tớc trục bị dān một cách điéu hòa.
- Có thể điéu chinh thời gian khơi đợng (thời gian tăng tớc) của trục bị dẫn.
- Có thé điéu chinh trị sơ mômen giới hạn truyên qua ly họp, vi vậy ly hợp ma sát có thé dùng làm tiết máy ngăn quá tải.

Do có những ưu điếm trên nên ly hợp ma sát được dùng nhiêu trong các ngành ché tạo máy.

Tuy nhiên, cūng nên chú ý là trong nhūng trường họp yêu cẩu sớ vòng quay của các trục được nới phải hoàn toàn bảng nhau, dùng ly hợ ma sát sẽ khong thích hộp vi có thê xảy ra hiẹn tượng trự̛̣ trên be mặt ma sát do ngẫu nhiên, lúc áy trục bị dẫn sē quay chậm hơn trục dẩn.

Cãn cû vào hình dạng bẻ mạt ma sát cơ thể chia ly hơp ma sát ra làm ba loại :

- Ly hợp diia ma sát có bê mật ma sát là mạ̣t phẩng (hinh 18-20a, b).
- Ly hợp côn ma sát, có bé mặt ma sát là mạ̣t côn (hịnh $18-20 \mathrm{c}$).
- Ly hợp trụ ma sát, có bê mặt ma sát là mạ̣t trụ (hình 18-20d).

Cũng như ly hợp vấu, ly hợp ma sát không cho phép các trục lệch nhau.
Ly hợp đỉa ma sát được dùng

Hinh 18-20 nhiêu hơn các loại ly hợp ma sát khác, vì cơ thể truyến mờmen xoán lơn, đóng ly họp êm. Ly hợp ma sát nhiêu dĩa có kích thước tương đói nhỏ so với các loại ly họp ma sát khác. Ly hợp côn ma sát cơ ưu điếm là cấu tạo đơn giản, lựe dọc true nhó hơn so vá̛i ly họp đỉa ma sát.

Vật liệu làm mạ̣t ma sát có thể là kim loại như gang với gang, thép vơi gang hoặc thép, đờng thanh với thép hoặc dùng phơi hợp vật liệu không kim loại như da, pherốo (amiăng ép), têctólit, gơ... hoặc gớm kim loại vá̛i gang hoạ̣c thép. Trường họp ly hợp có mặt ma sát là kim
loại và làm viẹc trong điếu kiện đơng mở luôn, cần phải bôi trơn đầy đủ (nhát là khi bê mặt ma sát là thép với thép hoạ̣c đông thanh với thép). Vì hệ sô ma sát giữa kim dưng phơi hợp vật liẹu không kim loại làm việc với kîm loại, nhơ đó kích thước ly hợ cớ thé nhỏ gọn và sức bến mòn được nâng cao. Dùng các loại vật liệu không kim loại làm việc với kim loại, bê mặt tiếp xúc có thể bôi dầu hoạ̣c để khô.

Đế có thế truyên được mômen xoán T qua ly hợp cấn đảm bảo điêu kiện :

$$
\begin{equation*}
\mathrm{T}_{\mathrm{ms}}=\frac{\mathrm{F}_{\mathrm{a}} \cdot \mathrm{fZd}_{\mathrm{k}}}{2} \geqslant \mathrm{~K} \cdot \mathrm{~T} \tag{18-10}
\end{equation*}
$$

trong đó T_{ms} - mômen do lực ma sát sinh ra; F_{a} - lực dọc trục tác dụng vào ly hợ ; f - hệ so ma sât ; d_{k} - đường kính trung bình của bê mặt làm việc của ly hợp ; Z - sర́ cặp bê mặt ma sát.

1. Ly họp dia ma sát

Ly hợp đỉa ma sát có các kiếu hai đila và nhiếu dỉa.

Ly hơp hat día ma sát dơn giản nhất (hình 18.20a) gồm hai nửa ly hơp là hai đỉa ma sát, một dia láp chật với mọt trục, còn dỉa thứ hai láp di đợng trên trục kia. Dơng ly hợp hai đĩa sê ép chạt với nhau, trên bé mặt hai đia sinh ra lực ma sát dé truyên chuyến động và mômen xoán.

Dể giảm bớt lực dọc trục F_{a} cân thiết dùng ép các nửa ly họ̣ và giàm kích thước ly hợp, thường dùng ly họp nhie̛u dia ma sât. Hình 18.21 nêu mợt ví dụ vê kết cá̛u của ly họ̣p này. Trên trục 1 lấp nửa ly họp 2 có then hoa ben trong, còn trục bị dān 9 láp nửa ly hợp 8 co then hoa ngoài. Giữa hai nửa ly họ̣p có lông ba đía dẫn 5 và hai đĩa bị dẫn 4, được ép lại với nhau nhờ đòn ba̛y 3 khi di chuyên ơng 6 dọc theo then dẫn hương 7. Các

Hinh 18-21 đia 5 có răng phia ngoài đé gài với then hoa của nửa ly hợp 2, còn các đla 4 có răng phía trong để gài với then hoa của nửa ly hợ 8 , các đỉa cơ thé trự̛̣ dể dàng nhờ khe hở giữa răng đīa và rãnh then hoa.

Lực dọc trục F_{a} cẩn thiết để truyên được mômen xoân T được xác định từ điêu kiện (18-10)

$$
\begin{equation*}
F_{a}=\frac{2 K T}{d_{k} Z f} \tag{18-11}
\end{equation*}
$$

Vật liệu bê mặt ma sát được chọn theo trị só áp suắt trung binh p, sao cho thỏa mẵn điêu kiện.

$$
\begin{equation*}
\mathrm{p}=\frac{\mathrm{F}_{\mathrm{a}}}{\mathrm{~A}}=\frac{2 \mathrm{KT}}{\mathrm{~d}_{\mathrm{k}} \mathrm{fZA}} \leqslant[\mathrm{p}] \tag{18-12}
\end{equation*}
$$

trong đơ $\mathrm{A}=\pi \mathrm{d}_{\mathrm{k}} \mathrm{b}$ - diện tích bê mạ̣t ma sát ; d_{k} và b - đường kính trung bình và chiêu rợng của bê mặt ma sát ; $[\mathrm{p}]$ - áp suất cho phép. Thường lấy $\psi=\mathrm{b} / \mathrm{d}=$ $0,15 \div 0,25$ đới với ly hợp đla ma sát và côn ma sát.

Bảng 18.2 cho trị só áp suất cho phép [p] và hệ số ma sát f của một số vật liệu ma sát dùng cho ly hợp ma sát.

Bảng 18.2
Hẹ sơ ma sát f và áp suất cho phép [p] của một só vật liệu làm măt ma sát

Điêu kiện bôi trơn và vật liệu ma sát	f	[p] MPa
Duạc bôi tron		
Thép tôi với thép tôi	0,06	0,6 $\div 0,8$
Gang với gang hoặc với thép tôi	0,08	$0,6 \div 0,8$
Têctôlit với thép	0,12	0,4 $\div 0,6$
Gốm kim loại với thép tôi	0,10	$0,8 \div 1,0$
Khong boi tron		
Gang với gang hoạc với thép tôi	0,15	$0,2 \div 0,3$
Pherôđô với thép hoặc với gang	0,30	$0,2 \div 0,3$
Góm kim loại với thép tôi	0,40	$0,3 \div 0,4$

Chú thich
1 - Trị sơ nhỏ dùng khi ly hợp có nhiếu đĩa ma sát, trị so lớn khi ly họ̣p cơ ít đĩa ma sát.
$2-$ Khi $v<2,5 \mathrm{~m} / \mathrm{s}$ cần giảm bớt $[\mathrm{F}]:$ nếu $\mathrm{v} \simeq 5 \mathrm{~m} / \mathrm{s}$ thỉ giảm 15%; néu $\mathrm{v} \simeq 10 \mathrm{~m} / \mathrm{s}-$ giả̉m 30%; nếu $\mathrm{v} \simeq 15 \mathrm{~m} / \mathrm{s}-$ giảm $35 \%,\left(\mathrm{v}=\frac{\pi \mathrm{d}_{\mathrm{k}} \mathrm{n}}{60 \cdot 1000}-\right.$ vận tớc vòng trung binh của ly hợp ma sát $)$.
2. Ly hợp côn ma sát

Sơ đơ của ly hợp côn ma sát giới thiệu trên hình 18.22. Ly họ̣ gốm hai đia láp trên hai trục, một đỉa lắp chật còn đia kia có thể di động dọc trục. Mạ̣t làm việc của các đĩa là mặt côn, có gơc côn α. Dưới tác dụng của lực F_{a} trên bé mật ma sát sinh ra áp suất, gây nên lực ma sât đé truyễn mômen xoăn. Lực ma sát có phương theo đường tiếp tuyến với các vòng tròn trên mặt côn.

Xét điếu kiện cân bà̀ng của nửa ly hợp bỗn phâi, ta có

trong dó $f^{\prime}=\frac{f}{\sin \alpha}-$ hẹ so ma sát tưong dưong.
Lựe dọc trục F_{a} cần thiết

$$
\begin{equation*}
F_{a}=\frac{2 K T}{d_{k} f^{\prime}} \tag{18-16}
\end{equation*}
$$

$$
\begin{align*}
& \mathrm{F}_{\mathrm{a}}=\mathrm{pb} \pi \mathrm{~d}_{\mathrm{k}} \sin \alpha \tag{18-13}\\
& \mathrm{KT}=\mathrm{T}_{\mathrm{ms}}=\mathrm{pfb} \pi \mathrm{~d}_{\mathrm{k}}^{2} / 2 \tag{18-14}
\end{align*}
$$

Giai hẹ phương trinh này ta được

$$
\begin{equation*}
K T=T_{m s}=\frac{F_{a} d_{k}}{2} \cdot \frac{f}{\sin \alpha}=F_{a} \cdot \frac{d_{k}}{2} f^{\prime} \tag{18-15}
\end{equation*}
$$

Hinh 18-22

Rơ ràng là trị sơ f^{\prime} càng tăng lên nếu càng giảm góc côn α. Hệ són ma sát tương đương f^{f} tăng thì lực dọc trục F_{a} giảm xuớng. Đó là ưu điếm của ly hợp côn ma sát.

Tuy nhiên khơng nên láy goóc côn α quá nhỏ để tránh ly hợp bị tự hãm, gây khó khăn cho việc mở ly hợp (tách các bế mật ma sát).

Diếu kiện để tránh tự hã̃m $\alpha>\rho=$ arctgf. Thường lấy $a \approx 15^{\circ}$.
Để giảm mòn bế mặt làm việc của ly hợp, ta cần kiểm nghiệm vê áp suắt.

$$
\begin{equation*}
\mathrm{p}=\frac{\mathrm{F}_{\mathrm{a}}}{\pi \mathbf{b} d_{\mathrm{k}} \sin \alpha} \leqslant[\mathrm{p}] \tag{18-17}
\end{equation*}
$$

Ly hợp côn ma sát có kích thước lớn hơn ly hợp nhiếu đỉa ma sát, chế tạo cūng phức tạp hơn và đơi hỏi các trục phải có độ đồng tâm cao. Vì vậy ly hợp cơn ma sát it được dùng hơn.

18.6. LY HỢ TỰ DỢNG

Ly họp tự đợng được dùng trong những trường hợp cấn tự động tách hoặc nới các trục khi mợt trong những thông sớ của máy thay đời. Có thể chia ly hợp tự động ra các loại :

- Tư động tách rời các trục khi mômen xoán quá lớn : ly hơp an toàn
- Tự động nơi hoặc tách các trục tùy theo chiếu chuyễn động tương đới giữa hai trục : ly họp mọt chiéu
- Tự động nơi hoạc làm rời trục tùy theo trị só vận tớc : ly họp ly tam.

18.6.1. Ly hơp an toàn

Ly hợp an toàn được dùng đế bảo vệ máy hoạ̣c bộ phận máy khỏi bị phá hỏng khi xày ra quá tải.

Theo nguyên lý làm việc có thẻ̛ chia ly hơp an toàn ra các loại :

- Ly họp chớt an toàn
- Ly hợp ma sát an toàn
- Ly hợp vâu an toàn

1. Ly họp chot an toàn

Cáu tạo của một kiếu ly họ̣p chớt an toàn trinh bày trên hình $18-23$. Mômen xoán truyền từ nửa $1 y$ hợp 1 sang nửa ly hợp 4 (hoạc ngượ lại) nhờ chớt 3. Khi quá tải chớt bị cất đứt, hai nửa ly hợp không nới với nhau nữa. Để ly hợp cơ thê tiếp tục làm việc,

Hinh 18.23 phải thay chớt khác. Ống 2 bà̀ng thép tời co cợ rấn cao để che chở cho bê mật lỡ của ly họp khỏi bị chớt tỳ dập. Chơt thường làm bà̀ng thép cácbon trung bình, tôi cải thiện, hoạ̣c đôi khi làm bằng thép tôi. Chớt phải được bó trí sao cho có thé thay được dê dàng. Trong mói ly họp cơ thé dûng một hoạc nhiêu chớt. Ly hợp có mợt chớt làm viẹc chính xác hon nhưng gay thêm tải trọng hướng tâm tác dụng vào trục và ơ. Trong ly hợ có nhiêu chớt các tai trọng hướng tâm tự cân bả̉ng lẫn nhau. Vê cấu tạo ly họ̣p, cấn chú ý bơ tri ngăn khơng cho chớt hoạ̣c các mảnh vỡ khi chớt gãy bị rơi ra' ngoài gây hư hỏng đơi với máy hoạc cơ cấu.

Đường kinh d_{c} của chớt được xác định theo điếu kiện : khi ly họ̣p chịu mômen xoán giới hạn, ví dụ $\mathrm{T}_{\mathrm{t}}=\mathrm{KT}$, thì chớt bị cát đứt.

$$
\begin{equation*}
\mathrm{KT}=\mathrm{Z} \cdot \frac{\pi \mathrm{~d}_{\mathrm{c}}^{2}}{4} \tau_{\mathrm{c}} \cdot \frac{\mathrm{~d}_{\mathrm{k}}}{2} \tag{18-18}
\end{equation*}
$$

trong đó Z - sớ chốt ; d_{k} - đường kính vòng tròn qua tâm các chớt ; τ_{c} - giỡĩ hạn bên cất của chớt, nêu chớt bằng thép 45 tồ, có thể lấy

$$
\tau_{\mathrm{c}}=420 \mathrm{MPa}
$$

Từ công thức (18-18) tim được

$$
\begin{equation*}
d_{c}=\sqrt{\frac{8 K T}{\pi Z \cdot \tau_{c} \cdot d_{k}}} \tag{18-19}
\end{equation*}
$$

2. Ly hơp ma sát an toàn

Ly hợp ma sát an toàn được dùng trong các máy hoặc cơ cấu hay bị quá tải trong thời gian ngắn, thường là do va dập.

Cấu tạo của ly hợp ma sát an toàn cũng gần giống nhự ly hợp đĩa ma sát hoặc ly hợp côn ma sát, chỉ khác ở chố không dùng co cấu điếu khiễn mà chí có lò xo luôn luôn ép các đỉa vào nhau bằng một lực đã định trước.

Kiêu ly hợp ma sát an toàn được dùng chủ yếu là kiếu có nhiếu đĩa ma sát (hỉnh 18.24). Ly họ̣ côn ma sát an toàn chỉ dừng khi mômen xoán nhỏ. Tùy theo vị trí đật ly hợ, các đīa có thể dược bôi tron hoạc đê khô.

Các bế mặt ma sát trong ly hợ làm viẹc khô được chê tạo bằng các loại vật liệu khác nhau, khong dính vào nhau, như thép với amiăng, do đó hẹ só ma sát ơn định hơn so với ly họp được bôi trañ. Trong ly hợ được bôi trơn, dâu dể bi quánh và các bê mật làm viẹc bị dính. Vi vậy, ly họp làm viẹc kho đượe dùng nhiéu hơn.

Lo xo trong ly hơp ma sát an toàn phai điéu chinh dược.
Khi máy bi quá tải, các be mạt làm viẹc của ly hơp trượt lên nhau, sinh ra nhiệt, Khi bị trượ ly họp vấn tiép tưc truyên mómen xoân, nhưng trị so mómen xoân truyên qua ly hơp lúc này thương nhở hơn vì hẹ sơ ma sát trượt của phần lớn vật liệu nhỏ hon hẹ só ma sait tỉnh.

Cách tính ly hợp ma sát an toàn cữg tương tự như tính ly họp ma sát.

3. Ly hơp váu an toàn

Ly hơp vâu an toàn cơ cá̛u tạo tương tự như ly họp vấu, chi khác ở chố là dùng lò xo đé ép các vâu gài vào nhau và mặt làm việc của vâu có gớc vát lón $\alpha=30 \div 45^{\circ}$, tớt nhát là 45° (hinh 18.25).

Nhiéu khi mặt vấu đự̛̣ chể tạo có mặt cong, gớc vát tăng dần tù chân đén đỉnh vấu. Đinh vấu làm lượn tròn.

Khí quá tải, các vấu sé trượt lên nhau, khi hết quá tải lại tự động gài vào nhau và trá lại làm việc bình thường.

Ly họ̣p vấu an tờn được dùng nhiếu trong các bộ truyến có vận tớc và mômen xoắn khơng lớn lám. Ly hợp vấu an toàn làm việc khá chính xác vl tính chắt đản hồi của lò xo khá ớn định và bao giò cũng ôn định hơn là hệ sơ ma sát. Tuy nhiên loại ly hợp này không nện dùng trong trường họ̣ vận tớc cao vì khi quá tải các vấu bị va đập mạnh và gây nhiếu tiếng ốn.

Hiện tượng trượt làm chơng mòn vấu, do đơ đơi với các ly họp trong máy có quá tải lâu nên bớ trí thêm cơ cấu điếu khiển bằng tay.

Hinh 18-24

Hình 18-25

Hinh 18-26

Để giảm mòn vấu, có thể thay các vấu trên một nửa ly họp hoạc trên cả hai nửa ly hợp băng các viên bi. Trong ly hợ bi an toàn, một phần ma sát trượ dược thay thế bằng ma sát lăn. Trễn hinh 18-26 trình bày một kiêuu ly hợp bi an toàn, trên một nửa ly hợp có vấu, còn nửa kia có bi và lò xo. Lò xo luôn luôn ép bi gài vào vấu, cứ môi bi có một lò xo, cho nên tải trọng được phân bơ đêu trến các bi. Ly hợp bi an toàn được dùng khá phớ biên.

18.6.2. Ly hop ly tam

Ly họ̣p ly tâm dùng đe̛ tự đợng nơi (hoặc tách rời) các trục khi vận tớc của trục dẫn đạt trị só cho trức nào đó.

Ly hợp ly tâm được dùng đế : a) đơng mơ co ca̛u làm việc được dê dàng, bầng cách điéu chinh tớc đọ đông co ; b) truyên đông trong các máy hoạ̣c co cá̛u co mômen vo lăng lơn, còn mơmen mở máy cùa

Hinh 18-27 đơng co lại nhỏ (như động cơ điện không dơng bộ v.v...) ; c) mớ máy em v.v...

Trên hinh 18-27 trình bảy mợt kiếu ly họp ly tâm.
Khi trục dã̃n quay, lưc ly tam $F_{\text {lt }}$ ép má 3 vào vành của nửa ly họp 2, nhưng lại bị cán bơi lựe F của lò xo 4 . Trị sớ lực F tùy thuộc đợ vơng của lo xo và được điéu chinh bởi vít 5 . Điêu kiẹn để má 3 tiếp xúc với vành ly họp

$$
\begin{equation*}
F \leqslant F_{i t}=m r \omega^{2} \tag{18-20}
\end{equation*}
$$

trong đó m - khơi lượng má ; \mathbf{r} - khoảng cách từ trọng tam T. của má đên tâm quay ; ω - vận tớc goc của nửa ly họp 1 . Từ công thức (18-20) có thê tính được lực F cẩn thiét của lò xo đé̉ khi vận tớc gớc của trục dăn chưa dạt tới trị sớ ω_{o} cho trước, nửa ly họp 1 vẫn còn quay tự do $F=\operatorname{mr} \omega_{o}^{2}$.

Dê truyên được mômen xoân $\mathrm{T}_{\mathrm{t}}=\mathrm{KT}$, trục dā̃n cần cơ vận tớc góc ω_{1}. Co the̛ xác định ω_{1} từ điêu kiẹn

$$
\begin{equation*}
\mathrm{KT} \leqslant 0,5\left(\mathrm{~F}_{\mathrm{lt}}-\mathrm{F}\right) \mathrm{fZD}=0,5 \mathrm{mrDZf}\left(\omega_{1}^{2}-\omega_{\mathrm{o}}^{2}\right) \tag{18-21}
\end{equation*}
$$

trong đó Z - s б má ; f - hẹ so ma sát ; D - đữ̀ng kinh bé mạt ma sát của ly hợp (hình 18-27). Trong phạm vi vận tơc giữa ω_{0} và ω_{1} ly hợp bị trượt và trục bỉ dẫn được tǎng tợ dần dần.

Hệ thức giữa lực lò xo F và độ vơng y trong trương hợp hinh 18.27

$$
\begin{equation*}
F=\frac{48 E J y}{l^{3}} \tag{18-22}
\end{equation*}
$$

trong đó $\mathrm{J}=\frac{\mathrm{bh}^{3}}{12}$ - momen quán tính của tiét diện 10 xo.
Bê mật làm việc của má được kiểm nghiệm theo áp suát cho phép [p] như đơi với các ly hợp ma sát khác.

18.6.3. Ly ḥ̛p một chiều

Ly hợp mợt chiêu chi truyên được mômen xoân theo một chiêu nhất định. Ly hợp cho 'phép trục bị dẫn có thễ quay nhanh hơn trục dẵn nêu như trục bị dẫn nhận dược chuyễn động quay tù một xich dā̃n động khác có tơc đọ cao hon.

1. Ly họp räng mot chieu

Trong ly hơp râng một chiêu có bánh răng vơi dạng răng không dợi xững dược gọi là bánh cóc và con cớc gài vào rânh giữa các ráng. Con cớc truyên mómen xoán theo

Ly hơp răng một chiêu co ưu điếm là làm viẹc chác chán, lực tác dụng không lớn lám (do làm viêc bàng cách ăn khớp giữa răng vơi cọn cóc mà không phải là làm việc nhơ ma sát). Nhượ điém là không thé đơng ly họp d vi trí bát ky, khi aóng vâu bi va dâp mạnh và khi dùng môt con cóc trục phai chịu lự hương tâm khá lơn.

V 1 vây ly họp rạng tương doli it düng và chl dực dùng trong các truyên động chạm.

2. Ly hopp vau mot chieu

Cáa tạo cưa ly hơp va̛u mọt chiêu tưong tư nhu ly họ̣ váu, cac vá có tiét diện không đơi yữg được bo trí nghieng theo mọt chieu nhât đinh. Nưa ly hợ di dọng dược ép vào nửa ly họp co địh nhờ lo xo, đảm bảo truyén mômen xoán một chiêu. Khi thay đới chiếu chuyến đọng tương đđi, các vâu se trượt lên nhau. Loai ly họp này it đực dùng.
3. Ly hop con làn ma sát môt chiéu

Ly hợ con lăn ma sát một

Hinh 18.28

Nếu bánh răng 1 quay cùng chiếu kim đồng hồ, dưới tác dụng của lực ma sát con lăn 3 nêm chặt vào phẩn hẹp của khe, tạo thành mơi ghép cứng bánh răng vào trục. Khi bánh răng quay theo chiéu ngực lại, con lân sé chạy ra phân rộng của khe và bánh răng không được nới với trục nũa, nghla la bánh răng cón thé quay tự do theo chiêu ngược với kim đơng hợ.

Chớt đẩy 4 cơ lò xo 5 tương đới yếu cơ tác dụng giữ con lăn lû̂n luôn tiếp xúc với vành 2.

Ly hợp con lăn ma sát một chiếu cơ ưu điểm là hâu như không cợ thời gian chạy khồng lúc ban đâu như trong ly hợp răng một chiéu hoạc ly hợp vấu một chiếu và làm việc em, không ôn.

Ly hợp con lăn ma sát mợt chiêu được dùng trong các máy vận chuyễn như mô tô, ôtô, trong các khí cụ v.v...

Khi truyến mơmen xoân con lăn chịu các lực pháp tuyến F_{n} và các lự ma sát F do nửa ly hợ 1 và nửa ly hợp 2 tác dụng (theo điêu kiện đới xứng các lực F và các lực F_{n} bằng nhau từng đôi một). Các lực F_{n} có $x u$ hương đây con lăn chạy ra phân rộng của khe, theo phương dường phân giác của góc α, các lực ma sát $F=F_{n} . f$ có tác dụng cạn lại. Để con lăn khơng chạy ra phần rộng của khe, phải thỏa mãn điêu kiện

$$
2 \mathrm{~F} \cos (\alpha / 2) \geqslant 2 \mathrm{~F}_{\mathrm{n}} \sin (\alpha / 2)
$$

hoặc $2 \mathrm{~F}_{\mathrm{n}}$ f. $\cos (\alpha / 2) \geqslant 2 \mathrm{~F}_{\mathrm{n}} \sin (\alpha / 2)$. Sau khi biến dời ta dược

$$
\begin{equation*}
\operatorname{tg}(\alpha / 2) \leqslant \mathrm{f}=\operatorname{tg} \rho ; \alpha \leqslant 2 \rho \tag{18-22}
\end{equation*}
$$

Giữa goc α và các kích thước của ly hơp có hệ thức (hinh 18.28)

$$
\begin{equation*}
\cos \alpha=\frac{b+d / 2}{D / 2-d / 2}=\frac{2 b+d}{D-d} \tag{18-23}
\end{equation*}
$$

Từ các hẹ thức (18-22) và (18-23) tinh đường kinh con lăn d .
Dộ bến bê mật của con lăn và các bê mạt làm viẹc của nửa ly hợ 1 và 2 được kiêm nghiẹ̣m vê ûng suât tiếp xúc (trường họp $\mu=0,3$).

$$
\begin{equation*}
\sigma_{\mathrm{H}}=0,418 \sqrt{\mathrm{~F}_{\mathrm{n}} \mathrm{E} /\left(1 \rho_{\mathrm{H}}\right)} \leqslant\left[\sigma_{\mathrm{H}}\right] \tag{18-24}
\end{equation*}
$$

trong đó : $\mathrm{E}-\mathrm{mô}$ un đàn hờ tương đương ; $\rho_{\mathrm{H}}-\mathrm{bán}$ kính cong tương dương tại chơ tiép xúc, trương họp tiêt máy 1 có be mạt làm việc là mặ phảng thi $\rho_{\mathrm{H}}=\mathrm{d} / 2$ (ứng suất sinh ra tại chố tiếp xúc giữa con lăn với bê mặt của nửa ly hợp 1 có trị số lớn hơn) ; l-chiéu dài con lạn.
Lực pháp tuyên F_{n} được xác định theo hẹ thưc

$$
\begin{equation*}
K T=F \cdot \frac{D}{2} \cdot Z=F_{n} \frac{D}{2} \cdot Z \operatorname{tg}(\alpha / 2) \tag{18-25}
\end{equation*}
$$

vớ Z - só con lăn ; hệ so ma sát được biểu thị qua $\operatorname{tg}(\alpha / 2)$. V1 goc α khá nhỏ, coi $\operatorname{tg}(\alpha / 2) \approx a / 2$, thay các gía trị của F_{n} [rút ra tù̀ (18-25)] và ρ vào đieu kiẹn (18-24) ta được.

$$
\begin{equation*}
\sigma_{\mathrm{H}}=0,418 \sqrt{8 \mathrm{KTE} /(\mathrm{DdlZ} \alpha)} \leqslant\left[\sigma_{\mathrm{H}}\right] \tag{18-26}
\end{equation*}
$$

Các nửa ly họp 1 và 2 và các con lăn thương được ché tạo bàng thép ШX15, ШX12, be mật được nhiệt luyện co đọ rán không thấp hơn 60 HRC . Ưng quât tiêp xúc cho phép $\left[\sigma_{H}\right]=1200 \div 1500 \mathrm{MPa}$.

Cong thức (18-26) cho thây nêu giảm goc α thì ứng sua̛t tiếp xúc σ_{H} tăng lên. Vì vậy khi chọn α đé thỏa măn điêu kiện (18-22) cần chú ý điéu nảy. Đơi vđ̛i các vật liệu nơi trên, trong thực tế thường lấy $\alpha=7 \div 8^{\circ}$

Chưong 19

Lò XO

19.1. KHÁI NIỆM CHUNG

Lò xo là tiết máy có tính đàn hồi cao, được dùng rộng rãi trong các máy móc, khí cụ để :

- Tạo nên lực ép trong các khớp nới, phanh, truyển động bánh ma sát v. v... ;
- Giảm chấn động, rung động ;
- Tích lũy cơ năng và làm việc như một động cơ (cót đồng hồ...) ;
- Thực hiện các dịch chuyển trở vê vị trí cũ của van, cỡ cấu cam... ;
- Đo lực (trong các khí cụ đo như lực kế v.v...).

Có thể phân loại lò xo theo dạng tải trọng tác dụng (kéo, nén, uốn, xoắn) ; theo hình dạng cấu tạo (lò xo xoắn ốc, lò xo vòng, lò xo nhíp, lò xo xoáy ốc v.v...) ; theo đặc tính (độ cứng không đởi, độ cứng thay đởi). Kết cấu một số loại lò xo được giới thiệu trên hình 19.1 : lò xo chịu kéo (hình 19.1a), lò xo chịu nén (hình $19.1 \mathrm{~b} \div 19.1 \mathrm{~h}$), lò xo chịu xoán ($19.1 \mathrm{i}, \mathrm{k}$) và lò xo chịu uốn (hình $19.11, \mathrm{n}, \mathrm{m}$).

Hình 19.1
Được dùng nhiếu là lò xo xoán ớc chịu kéo, chịu nén và chịu xoắn, chế tạo bà̀ng dây lò xo tiết diện tròn (hình $19.1 \mathrm{a} \div 19.1 \mathrm{~d}$ và 19.1 i). Để giảm kích thước người ta dùng lò xo phức hợp, gốm hai (hình 19.1c) hoặc nhiếu thành phần lồng vào nhau. Trong trường hợp này các lò xo thành phần được quấn theo chiếu xoán ớc ngược nhau để giảm bớt lực xoắn các mặt mút tựa.

Trong trường hợp đặc biệt, lò xo được chế tạo bằng băng kim loại có tiết diện chữ nhật (hỉnh 19.1 ©). Ngoài ra, còn dùng lò xo gồm hai, ba hoặc nhiếu sợi bện lại (tiết diện sợi bện : trên hình 19.1 b).

Lò xo dia (hình 19.1e) dùng khi tải trọng lớn, chuyển vị đàn hối nhỏ và kích thước theo phương dọc trục nhỏ. Lò xo vòng (hình $19.1 \mathrm{~g}, \mathrm{~h}$) dùng khi tải trọng lớn, cần khuếch tán nhiê̂u cơ năng (để giảm chấn).

Lò xo chịu xoắn tuy cũng được dùng khá nhiếu trong các máy, nhưng vẫn ít hơn so với lò xo chịu kéo và chịu nén. Trong các loại lò xo chịu xoắn, lò xo xoán ớc trụ chịu xoán (hình 19.1i) được dùng nhiếu hơn cả. Khi kích thước dọc trục nhỏ và mômen xoắn nhỏ, dùng lò xo xoán ớc dẹt (hình 19.11).

Trường hợp kích thước hẹp theo phương của lực tác dụng, còn theo phương kia tương đối rộng, có thể dùng lò xo nhip (hình 19.1 n), làm việc với ứng suất uốn, để giảm chấn động và va đập trong các máy vận tải v.v...

Một trong những đặc trưng quan trọng của lò xo là độ cứng của lò xo $\mathrm{C}=\mathrm{dF} / \mathrm{d} \lambda$ hoặc $\mathrm{C} \varphi=\mathrm{dT} / \mathrm{d} \varphi$, trong đó F và T - lực và mômen xoắn tác dụng lên lò xo ; λ và φ chuyển vị dài và chuyển vị góc của lò xo. Các lò xo trình bày trên hình $19.1 \mathrm{a}, \mathrm{b}, \mathrm{c}$, $\mathrm{i}, \mathrm{k}, \mathrm{m}$ có độ cứng được coi như không đổi (khi ứng suất nhỏ hơn giới hạn đàn hôii), giữa tải trọng và chuyển vị có quan hệ đường thẳng (tuyến tính).

Lò xo xoắn ốc côn (hình 19.1d) là một ví dụ vê lò xo có độ cứng thay đởi. Khi lực nén F tăng lên, các vòng lò xo có đường kính lớn, độ mếm cao hơn, sẽ tỳ sát vào nhau, làm giảm chiê̂u dài tổng của các vòng lò xo bị biến dạng, do đó độ cứng C của lò xo tăng lên.

Dưới đây chủ yếu trình bày vê̂ lò xo xoắn ốc trụ chịu kéo và chịu nén, được dùng rộng rãi nhất trong các máy và khí cụ.

19.2. LÒ XO XOẮN ỐC TRỤ CHỊU KÉO VÀ CHỊU NÉN

19.2.1. Cấu tạo. Các thông số hình học chính

Lò xo cuộn bà̀ng dây thép tiết diện tròn (hình $19.1 \mathrm{a} \div 19.1 \mathrm{c}$) hoặc tiết diện chữ nhật (hoặc vuông). Loại trên được dùng nhiểu hơn vì giá rẻ và tiết diện tròn chịu xoắn tốt hơn. Thông thường dây thép tiết diện chữ nhật được dùng làm lò xo chịu lực nén lớn và có độ cứng cao (khi cùng chịu tải trọng như lò xo dây thép tròn, lò xo dây thép chữ nhật có kích thước nhỏ hơn).

Lò xo được đặc trưng bởi các thông số hình học chủ yếu sau đây (hình 19.2) :

- Đường kính d của dây hoặc kích thước tiết diện dây ;
- Đường kính trung bình D , đường kính ngoài $(\mathrm{D}+\mathrm{d})$ và đường kính trong ($\mathrm{D}-\mathrm{d}$) của lò xo ;
- Tỷ so đường kính $\mathrm{c}=\mathrm{D} / \mathrm{d}$;
- So vàng làm việc n của lo xo ;
- Bưóc t của lò xo ;
- Chiéu dài cúa lò xo ;
- Goc nang $\alpha=\operatorname{arctg}[\mathrm{t} /(\pi \mathrm{D})]$.

Trong các thông sơ trên, bươc của lò xo, gơ nâng và chiêu dài của lò xo đượ xét riêng khi 10 xo không chịu tài và chịu tải.

ĐỌ mêm của lò xo (nghịch đảo của độ cững) càng lôn khi tỷ sỡ đương kinh c và số vòng lò xo càng lớn. Thông thường tỷ so đường kính lò xo được chọn theo đường kinh day d :

d, mm $\ldots \ldots \ldots \ldots \ldots \leqslant 2,5$	$3 \div 5$	$6 \div 12$	
c	$\ldots \ldots \ldots \ldots \ldots .5-12$	$4 \div 10$	$4 \div 9$

Vé cáu tạo lò xo kéo và lò xo nên có nhưng dậc diêm khác nhau.
Lo xo kéo được cuộn kinn, các vòng sit nhau (hình 19.1a), tạo nên lực căng ban dâu giữa các vòng (các vòng tỳ̀ nhau chèn ép lẫn nhau) $F_{0}=(1 / 4 \div 1 / 3) F_{\text {lim }} ; F_{\text {lim }}$ là tải trọng giời hạn, khi chịu tác dụng cuà $\mathrm{F}_{\text {lim }}$ ûng suât trong lò xo gần bầng giơi hạn đàn hôi.

Hinh 19.3

Đẻ có thé ghép lò xo va̛i các tiét máy khác, nêu lò xo có đường kinh day $\mathrm{d} \leqslant 3 \mathrm{~mm}$, thường dùng đâu móc thương (hinh $19.3 \mathrm{a}, \mathrm{b}$, một vòng lò xo đực be quập). Thai cho be quập có tệp trung ûng suât làm giàm khả năng tải của lò xo. Vì vậy đới vai các lo xo quan trọng, chịu lực lón, dùng đâu móc có phần chuyên tiếp hinh cơn (hinh 19.3c), hoậc dùng moc ngoài lơng vào lò xo (hình 19.3d), hoạ̣c düng các tâm kim loại (hình 19.3d). Tơt nhăt là dùng loi cớ ren (hình 19.3e). Loại này dùng cho lò xo ∞ dương kính day từ 5 mm trở lên. Chiéu dài toàn bọ cuà lò xo ké cả moc được ký hiệu là H_{0}.

Lo so nên đực cuọn hờ (giữa các vòng có khe hơ). Dé tải trọng tác dụng đực chính tâm và giảm ung suât ưon cua cảc vòng ò hai đầu mút, các vòng này đựç cuên sit vơi vòng ben cạnh và mặt mút của lò xo đượ mài vuông góc với
 nhấ của mơi vòng lò xo $\lambda_{\max } / \mathrm{n}$ khoảng $10+20 \%$ đé tránh cho các vòng lo xo không bị sát nhau khi làm việc, gày nên sự thay đơi đọ cứng của lò xo. Chiếu cao phân làm viẹc của lo xo khi lo xo chua chịu lục $\mathrm{H}_{1}=\mathrm{nt}$. De tranh mât on dịnh theo phưong dọ trục, chiêu cao toàn bộ H_{o} của lò xo phải thỏa mân diêu kiẹ̣n $\mathrm{H}_{\mathrm{o}} \mathrm{D}<2,5 \div 3$. Nếu cấn

19.2.2. Ứng sựt và chuyên vị của lò xo

Già sử ngoại lực F (kéo hoạ̣c nén) tác dụng lên lò xo, trong tiêt diện day lò xo chịu momen $\mathrm{M}=0,5 \mathrm{FD}$ co vecto vuông góc vơi trục lò xo và lực F tác dụng dọc trục 10 xo (hinh 19.2).

Mơmen M chia làm 2 thành phần :
mơmen xoán

$$
T=0,5 \mathrm{FD} \cos \alpha
$$

và momen uớn

$$
M_{u}=0,5 F D \sin \alpha
$$

Lực F cũng được chia làm hai thành phẩn : lực pháp tuyên Fiñ và lực cât Fcosa
Trong tinh toán thực te̛ thường chil xét đên mômen xoán T và coi $T \approx 0,5 \mathrm{FD}$, còn thi bỏ qua các lực khác vì đơi với phấn lón lò xo, gớc nâng $\alpha<10 \div 12^{\circ}$ và ứng suất do các lực này gay nên khá nhỏ.

Ứng suất xoăn lớn nhât r sinh ra ả̛ thớ biền phía trong của lò xo phải thỏa mãn điêu kiẹn

$$
\begin{equation*}
\tau=\frac{\mathrm{kT}}{\mathrm{~W}_{\mathrm{o}}}=\frac{8 \mathrm{kFD}}{\pi \mathrm{~d}^{3}} \leqslant[\tau] \tag{19-1}
\end{equation*}
$$

trong đó W_{o} - mômen quán tính độc cực của tiết diẹn day lò xo ;
k - hẹ so xét đến độ cong của day lo xo (vi day lò xo có độ cong cho nên ứng suất xoán ơ các thớ bien phia trong lớn hơn so với các thớ biên phía ngoài), có thế tinh theo công thức :

$$
\begin{equation*}
k=\frac{4 c+2}{4 c-3} \tag{19-2}
\end{equation*}
$$

Hé so k düng trong tinh toán lo xo

$\mathrm{c}=\mathrm{D} / \mathrm{d}$	4	5	6	8	10	12
k	1,37	1,29	1,24	1,17	1,14	1,11

[τ] - Ứng suất xoân cho phép của lò xo.
Chuyển vị đàn hới dọc trục lò xo (kéo hoặc nén) được tính theo tích phan Moro (xem giáo trinh Sức bên Vật liệu)

$$
\begin{equation*}
\lambda=\int_{0}^{4} \frac{\mathrm{~T} \overline{\mathrm{~T}}}{\mathrm{GJ}_{\mathrm{o}}} \mathrm{dZ}=\frac{8 \mathrm{D}^{3} \mathrm{nF}}{\mathrm{Gd}^{4}} \tag{19-3}
\end{equation*}
$$

trong đó $\mathrm{T}=\mathrm{FD} / 2$-mômen xoân tại mơi tiết diẹn lò xo đo lực F gây nên ; $\overline{\mathrm{T}}$ - mômen xoấn tại môi tiết diẹn lò xo do lực tác dụng bàng đơn vị gây nên ; $\overline{\mathrm{T}}=\mathrm{D} / 2 ; \mathrm{G}-$ mômen đàn hời trượ, $\mathrm{G}=\mathrm{E} /[2(1+\mu)]$, ($\mathrm{E}-\mathrm{mô}$ đun đàn hời của vật liẹu lo xo), đơi vói lò xo thêp $G \approx 8.10^{4} \mathrm{MPa} ; 1$-chiêu dải day cuón các vòng làm việc, $1 \approx \pi \mathrm{Dn}$; $J_{o}=\pi \mathrm{d}^{4} / 32$ - mômen cân xoân của tiêt diện lò $x 0 ; n-s o ̂ ́ ~ v o ̀ n g ~ l a ̀ m ~ v i e ̣ ̂ c ~ c u ̉ a ~ l o ̀ ~ x o . ~ . ~$

Từ hệ thức (19-3) có thê viêt

$$
\begin{equation*}
\lambda=\lambda_{1} \mathrm{nF}=\mathrm{A}_{\mathrm{n}} \mathrm{~F} \tag{19-4}
\end{equation*}
$$

trong đơ A_{1} - độ mếm của một vòng lò xo, lả chuyễn vị của một vòng lò xo dưói tác dụng của lực bàng đơn vị

$$
\begin{equation*}
\lambda_{1}=8 \mathrm{D}^{3} /\left(\mathrm{Gd}^{4}\right)=8 \mathrm{c}^{3} /(\mathrm{Gd}) \tag{19-5}
\end{equation*}
$$

$\mathrm{c}=\mathrm{D} / \mathrm{d}$-tỷ só đường kính lò xo $; \lambda_{\mathrm{n}}=\lambda_{1} \cdot \mathrm{n}$ - độ mêm của lo xo
Các công thức (19-4) và (19-5) cho tha̛y độ mếm của lò xo càng lớn khi tăng só vòng làm việc của lò xo, tăng tỷ so đường kính (hoạ̣c tăng đường kính ngoài D của lò xo) và giám mỡun đàn hôii trự̛̣t G.

19.2.3. Tinh toán thiêt ké lò xo

Thay $\mathrm{D}=\mathrm{cd}$ vào công thức (19.1), biết ràng lực lớn nhất tác dụng lên lo xo $\mathrm{F}_{\max }$ tỉm đự̛̣ đường kính dây lò xo.

$$
\begin{equation*}
\mathrm{d} \geqslant 1,6 \sqrt{\mathrm{kF}} \mathrm{max}^{\mathrm{c} /[\tau]} \mathrm{mm} \tag{19-6}
\end{equation*}
$$

trong đó $\mathrm{F}_{\text {max }}$ tính bà̀ng N và $[\tau]$ tính bà̀ng MPa.
Chọn trước tỷ so đường kinh c của lò xo rời tính đường kính daỷ d theo công thức (19-6), sau đó xét xem c và d có phù h $̣$ p với nhau không.

Dường kinh trung binh của lò xo $\mathrm{D}=\mathrm{cd}$.

Só vòng làm việc n của lò $x o$
đượe tính theo điéu kiẹn : khi tải trọng tăng từ lúc đấu (khi láp) là $F_{\text {min }}$ đén khi lò xo chịu tải lớn nhắt là $F_{\text {max }}$ lò xo có chuyến vị đàn hối (chuyến vị làm việc) là x (hình 19.4). Chiếu dài lò xo thay đới từ $\mathrm{H}_{\text {min }}$ đến $\mathrm{H}_{\max }$. Các chuyên vị tương ứng là $\lambda_{\text {min }}$ và $\lambda_{\text {max }}$
Hinh 19.4

$$
\mathbf{x}=\lambda_{\max }-\lambda_{\min }=\lambda_{1} n\left(F_{\max }-F_{\min)}=\frac{8 c^{3}}{G d^{n}} n\left(F_{\max }-F_{\min }\right)\right.
$$

Do đó

$$
\begin{equation*}
n=\frac{x G d}{8 c^{3}\left(F_{\max }-F_{\min }\right)} \tag{19-7}
\end{equation*}
$$

Trị só lực $\mathrm{F}_{\text {min }}$ chọn theo nhiệm vụ của lò xo trong cơ cá̛u, số vòng n được quy tròn từng nửa vòng khi $n \leqslant 20$ và cả vòng khi $n>20$.

V1 lò xo chịu kéo có cáa tạo khác với lò xo chịu nén (lò xo chịu kéo có đâu móc và các vòng lò xo sít nhau lúc ban đầu) cho nên tính toán các kích thước vê chiếu dài lò xo cũng khác nhau.

Dói với lò xo chịu kéo
Chiéu dài lò xo khi chưa chịu ngoại lực

$$
\begin{equation*}
H_{o}=n d+2 h_{m} \tag{19-8}
\end{equation*}
$$

trong đó h_{m}-chiêu cao một đầu móc, $h_{m}=(0,5 \div 1) \mathrm{D}$
Chiêúu dài lò xo khi chịu lực lớn nhất

$$
\begin{equation*}
\mathrm{H}_{\max }=\mathrm{H}_{\mathrm{o}}+\lambda_{1} \mathrm{i}\left(\mathrm{~F}_{\max }-\mathrm{F}_{\mathrm{o}}\right) \tag{19-9}
\end{equation*}
$$

trong đơ: F_{o} - lực căng ban đầu, sinh ra khi cuộn lo xo, thông thường khi $\mathrm{d} \leqslant 5 \mathrm{~mm}$ lay $F_{0}=\frac{F_{\text {lim }}}{3}$, khi $d>5 \mathrm{~mm}$ láy $F_{o}=\frac{F_{\text {lim }}}{4}$

Lực giới hạn đói với lò xo chịu kéo.

$$
\mathrm{F}_{\mathrm{lim}}=(1,05 \div 1,2) \mathrm{F}_{\max }
$$

Chiếu dải lò xo khi chịu lựe $\mathrm{F}_{\mathrm{lim}}$ được tính tương tự như tính chiéu dài lò xo khi chịu lựe lớn nhất ($\mathrm{F}_{\max }$).

Chiếu dài dấy đế quấn lò xo

$$
\begin{equation*}
\mathrm{L}=\frac{\pi \mathrm{D} \mathbf{n}}{\cos \alpha}+2 \mathrm{l}_{\mathrm{d}} \tag{19-10}
\end{equation*}
$$

trong đó $l_{\text {d }}$-chiếu dài dây làm một đấu móc.
Đói với lo xo chíu nén
Só vờng toàn bợ n_{o} bầng só vòng làm việc n cộng thêm $(0,75 \div 1)$ vòng ở mới đâuu mút.

$$
n_{0}=n+(1,5+2)
$$

Vì mới đầu mút lò xo chịu nén được mài đi một ít nên chiêu cao lò xo lúc các vòng sit nhau

$$
\begin{equation*}
H_{s}=\left(n_{0}-0,5\right) d \tag{19-11}
\end{equation*}
$$

Bưóc của vòng lò xo khi chưa chịu tải

$$
\begin{equation*}
\mathrm{t}=\mathrm{d}+(1,1 \div 1,2) \lambda_{\max } / \mathrm{n} \tag{19-12}
\end{equation*}
$$

trong đo $\lambda_{\max }$ tính theo công thức (19-2) với lực $F=F_{\text {max }}$
Chiêu cao lò xo H_{o} khi chưa chịu tải (chiéu cao ban đẩu)

$$
\begin{equation*}
\mathrm{H}_{\mathrm{o}}=\mathrm{H}_{\mathrm{s}}+\mathrm{n}(\mathrm{t}-\mathrm{d}) \tag{19-13}
\end{equation*}
$$

Tinh lo xo chịu tải trong thay dới
Đới với những lò xo chịu tả̉i trọng thay đỡi với só chu kỳ lớn (như lò xo các van trong động cơ đớt trong), cấn tính toán theo đọ bên mơi. Giả sủ lò xo chịu tảa trọng thay đới từ $F_{\text {min }}$ đén $F_{\text {max }}$ ưng suất trong lò xo thay đởi theo chu trinh không đới xứng. Các ứng suắt xoân lớn nhá̛t và nhỏ nhắt trong tiết diện dây lò xo.

$$
\begin{equation*}
\tau_{\max }=\frac{8 \mathrm{kDF}_{\max }}{\pi \mathrm{d}^{3}} ; \tau_{\min }=\frac{8 \mathrm{kDF}}{\pi \mathrm{~d}_{\min }} \tag{19-14}
\end{equation*}
$$

Bien độ ứng suât và ứng suất trung bình

$$
\tau_{\mathrm{a}}=\frac{\tau_{\max }-\tau_{\min }}{2} ; \tau_{\mathrm{m}}=\frac{\tau_{\max }+\tau_{\min }}{2}
$$

Lठ xo được kiêm nghiệm vế hệ so an toàn theo điểu kiẹn

$$
\begin{equation*}
S_{\tau}=\frac{\tau_{-1}}{\tau_{a} / \varepsilon_{\tau}+\psi_{\tau} \cdot \tau_{m}} \geqslant 2 \tag{19-15}
\end{equation*}
$$

trong đó τ_{-1} - giới hạn mời xoấn của dây ld xo trong chu trinh đơi xứng, $\varepsilon_{\tau}-$ hệ só xét đến ảnh hưởng của kich thước tiết diện dây lò zo, đơi với lò xo làm bằng dây có đường kính $\mathrm{d} \leqslant 8 \mathrm{~mm} \varepsilon_{\tau}=1 ; \psi_{\tau}=0,1 \div 0,2-\mathrm{hẹ}$ so xét đén ảnh hưởng của ững suát trung bình.

Khi tính hệ sớ an toàn s_{τ} ta láy hẹ so tập trung ứng suát thực té $\mathrm{K}_{\mathrm{\tau}}=1$ vì sự tạp trung ứng suất xoân do độ cong của day lò xo đã được xét đến qua hệ só k khi tính ứng suăt $\tau_{\max }, \tau_{\text {min }}$

19.3. LÒ XO XOÁN ÓC TRỤ CHỊU XOÁN

Hinh 19.5

Cáu tạo loại lò xo này cũng tương tự như lò xo xoán $\mathrm{onc}_{\mathrm{c}}$ trụ chịu kéo hoạ̣c chịu nén, chỉ khác là các vòng lò xo được cuọn cơ khe hơ khoảng $0,5 \mathrm{~mm}$ đé tránh co xát nhau khi chịu tải và đâu móc có hình dạng riêng đé truyên mômen xoán (hinh 19.11). Lò xo thường được lồng lơi.

Khi chịu tải, trên mỡi tiết diện lò xo chịu mômen M bàng vối mômen xoân lò xo tác dụng từ bên ngoài. Vecto mômen M hương dọe trục lo xo (hinh 19.5). Chia mômen M ra làm hai thành phần : mômen uốn các vòng lò xo $\mathrm{M}_{\mathrm{u}}=\mathrm{M} \cos \alpha$ và mômen xoân các vòng lò xo $M_{x}=M \sin \alpha$.

Vi đớ với lò xo chịu xoán, thơng thường góc nâng của vòng lò xo $\alpha \leqslant 12 \div 15^{\circ}$, trong tính toán cớ thể lây gần đúng $\mathrm{M}_{\mathrm{u}} \equiv \mathrm{M}$ vả bó qua mômen xoán vòng lò xo M_{x}.
Ứng suất uớn lớn nhấ sinh ra ở các thớ biên phía trong của dây phải thỏa mãn điéu kiẹn

$$
\begin{equation*}
\sigma=\frac{\mathrm{kM}}{\mathrm{~W}_{\mathrm{u}}} \leqslant[\sigma] \tag{19-16}
\end{equation*}
$$

trong đơ W_{u} - momen cản uớn của tiét diện day lò xo ; k - hẹ so xét đên đọ cong cùa vòng lò xo, đơi với lò xo co tiết diện day hình tròn

$$
k=\frac{4 c-1}{4 c-4}
$$

Đường kinh day 10 xo

$$
\begin{equation*}
d>2,16 \sqrt[3]{\frac{\mathrm{kM}}{[\sigma]}} \mathrm{mm} \tag{19-17}
\end{equation*}
$$

trong dó momen M tính bàng Nmm , ứng suât uơn cho phép [σ] tính bàng MPa .
Góe xoañ θ của lo xo (tinh bàng rad) of the tính như tính góc xoay của tiêt diện mút cùa dốm cơ chiêu dài L, bảng tờng chiêu dài n vòng lò xo, chịu tác dụng của mômen uơn M.

$$
\begin{equation*}
\theta=\frac{\mathrm{ML}}{\mathrm{EJ}}=\frac{\mathrm{M} \pi \mathrm{D} \mathbf{n}}{\mathrm{EJ}} \mathrm{rad} \tag{19-18}
\end{equation*}
$$

trong đó J - mómen quán tính của tiêt diện dây lò xo đơi vớ một trục ;
E - mỡun đàn h h i của vật liệu lò xo.
So vòng lò xo được tifnh theo điéu kiẹn : khi momen tăng từ $\mathrm{M}_{\text {min }}$ (khi láp) đên $\mathrm{M}_{\text {max }}$ (luc chịu tải lớn nhất) lo xo bi xoấn một goóc θ.

$$
\theta=\frac{\left(\mathrm{M}_{\max }-\mathrm{M}_{\min }\right) \pi \mathrm{Dn}}{\mathrm{EJ}}
$$

do đó

$$
\begin{equation*}
\mathrm{n}=\frac{\theta \mathrm{EJ}}{\pi \mathrm{D}\left(\mathrm{M}_{\max }-\mathrm{M}_{\min }\right)} \tag{19-19}
\end{equation*}
$$

19.4. VẬT LIệU LÒ XO VÀ ỨNG SUẤT CHO PHÉP

19.4.1. Vạt liệu lò no

Vật liệu làm lò xo phâi có tính đàn hơi cao, không thay đỡi trong một thỡ gian dài và có đủ sữc bên. Vật liệu làm lò xo phải nhiệt luyện được và có thể tảng bến được bằng các phương pháp như làm biên cứng bê mặt, v.v. .. trong những trường hợp quan trọng.

Lỏ xo thường được ché tạo bà̀ng thép nhiéu cacbon như thép 65,70 và 75 , thép mangan 65Γ và $55 \Gamma \mathrm{C}$, thép silic $55 \mathrm{C} 2,60 \mathrm{C} 2,60 \mathrm{C} 2 \mathrm{~A}$, thép corom vanađi $50 \mathrm{X} \boldsymbol{\mathrm { XA }}$, thép niken silic 60 C 2 H 2 A hoạc thép corom mangan $50 \mathrm{X} \Gamma$.v.v...

Thép nhiếu cácbon là loại vật lięu ưược dùng rộng râi nhá̛t đê làm lo xo xoấn ớ trụ đường kính dây dưới 15 mm , vo loại thép này rẻ nhất. Tiêu chuân Liên Xo qui định các cấp bên của dây thép cácbon làm lò xo, theo thứ tự giảm dần đọ bến: I, II, ILA và III.

Thép mangan, thép silic và thép cơrôm - mangan có cơ tính và đọ thám tôi cao hon nên có thế dùng đê làm lò xo cơ đường kinh dây đến 20 mm , riêng thép cơrôm-mangan cơ thê làm lò xo co đường kính dây đén $25 \div 30 \mathrm{~mm}$.

Thép corơm vanadi cơ co tính cao, đạ̣c biẹt là độ bên mơi, chịu nhiệt tớt (cơ thể làm việc trong khoảng nhiẹt đọ từ -40 đến $400^{\circ} \mathrm{C}$) được dùng làm các lò xo quan trọng nhất, chả̉ng hạn như lò xo van cùa động co đớt trong. Đé tránh gl, lo xo được mạ cátmi v.v...

Trường hợp lò xo phải làm việc ơ các mồi trương có tác dụng ăn mòn hóa học, dừng lo xo bằng họp kim màu : đơng thanh silic mangan БрKMu 3 - 1, đông thanh thiêc -kẽm БрOД $4-3$, đơng thanh berili Bp. 52 v.v...

Ca tính của mợt só loại thép và đơng thanh làm lò xo cho trong các bảng 19.2 và 19.3 .
Bäng 19.2
Giơi hạn bên kêo σ_{b} cừa day thép cácbon làm lò xo

Duờng kính dây d.mm	ob. MPa		
	Day cáp I	Day cap II	Dayy cấp III
$0,2-06$	2700	2200	1700
$0,8 \cdot 10$	2400	2000	1600
$1,5 \cdot 2,0$	2100	1800	1400
$2,5-3,0$	6800	1700	1300
$4,0-6,0$	1500	1400	1100
$7,0-8,0$	-	1300	1000

Bảng 19.3
Co tinh của mot so loại thép và dong thanh lam lo xo

Loai thép hoăc dồng thanh	$\begin{gathered} \text { Nhiêt } d \theta \text { toi, } \\ { }^{\circ} \mathrm{C} \end{gathered}$	Nhiệt đô ram, ${ }^{\circ} \mathrm{C}$	Giói hạn bên σ_{b}, MPa	chói hạn chày $\sigma_{c h}$. MPa	Giới han bèn xoắn τ_{b}. MPa	Gicí han mói xoấn t-1, MPa
```6 5 70 55TC 65\Gamma 55C2 60C2A 60C2XA 60C2XфA 50XфA```	840 830 820 830 820 860 870 850 850	$\begin{aligned} & 480 \\ & 480 \\ & 480 \\ & 480 \\ & 460 \\ & 460 \\ & 420 \\ & 410 \\ & 520 \end{aligned}$	1000   050   1150   1000   1300   1600   1800   1900   1300	800   850   2000   800   1200   1400   1600   700   1200	$\begin{aligned} & 700 \\ & 750 \\ & 900 \\ & 700 \\ & 950 \\ & 1100 \\ & 1250 \\ & 1350 \\ & 950 \end{aligned}$	$\begin{gathered} 300-350 \\ 300-350 \\ 300-380 \\ 300-380 \\ -7 \\ 400-450 \\ 450-500 \\ 500-550 \\ 300-400 \end{gathered}$
ByOL 4-3   BpKMy 3-1	$100-1450$	,	$\begin{array}{r} 800-900 \\ 850-750 \\ \hline \end{array}$	$\cdots$	-	$\square$

Phân lơn lo xo cuọn nguọi đự̛̣c chê tạo bầng day thêp đă nhiẹt luyẹn (toii) trưoc khi cuọn, còn sau khi cụ̣̂n xong chl ram. Tât cả lò xo cựn nóng và những lò xo cụ̣n ngự̂i quan trọng (châng hạn như phân lơn lò xo làm băng thép họp kim) sau khi cuộn xong mâi toi.

### 19.4.2. Ứng suất cho phép

Chọn ựng suất cho phêp của lò xo cần xét đên : a) chất lương vạt liệu và nhiẹt luyẹn ; b) tính chât tải trọng ; c) điếu kiẹn làm việc (trong moi trường ăn mòn hoặc không, nhiệ đọ moi trường v.v...) ; d) mức độ quan trọng của lò xo và khả năng có thé thay the nhanh khi bị hóng ; d) thđ̛i hạn làm viẹc cual lò xo.

Ững suăt xoán cho phêp của lo xo xoán ơc trụ chịu kéo và chịu nén cho trong bảng 19.4. Từy theo tinh chất của tải trọng tác dụng và mực đọ quan trọng của lò xo, có thé chia lò xo ra làm ba nhơm đé chọn ững suât cho phép.

Nhóm A : Tải trọng đọng và thay aơi theo chu kỳ, việc thay thé lò xo khó khăn, lọ xo gãy co thể gây hư hòng nghiem trọng đơi vâi máy (lò xo van động co đơt trong, ld xo phanh diẹn tù̀ v.v...).

Nhơm B : Tai trọng tïnh hoạc fit thay dơi (lo xo của các van an toàn v.v...).
Nhom $C$ : Lo xo khong quan trọng (loे xo cừa v.v...).
Bäng 19.4
Ứng suât xoán cho phép của lò xo xoản ớ tru chịu kéo và chịu nén

Loại vạt liẹu	Dừng kinh day d, mm	[ $\tau$ ], MPa		
		Nhom A	Nhóm B	Nhom C
Dây thép lò xo cáp I	0,2-8	$0,36{ }_{\text {b }}$	$0,5 \sigma_{\mathrm{b}}$	$0,6 \sigma_{\text {b }}$
Day thép lo xo cáp II, III	0,2-8	$0,3 \sigma_{b}$	$0,5 \sigma_{\mathrm{b}}$	
Thép 60 C 2 và 60 C 2 H 2 A	5-42	400	750	750
Đong thanh БрОЦ 4-3	0,3-10	$0,2 \sigma_{\mathrm{b}}$	$0,4 \sigma_{b}$	
Đong thanh БрКМЦ3-1	0,3-10	$0,3 \sigma_{\mathrm{b}}$	$0,5 \sigma_{b}$	-

 vơi trị só cho trong bảng.

Ửng suât uơn cho phêp của lò xo xoản ơ tru chịu xoân cơ thé lây gên đúng.

$$
\begin{equation*}
[\sigma] \approx 1,25[\tau] \tag{19.20}
\end{equation*}
$$

### 19.5. TRİNH TƯ THIÉT Kê LÒ XO XOÁN OC TRỤ. THÍ DU

## 19.5. $\overline{\mathrm{I}}$. Trinh tự thié̛t ke lo xo xoann oc tru

Khi thiét kêe lò xo thường cho trưoc lực tác dụng lên lo xo, chuyên vị làm việc và kich thước giói hạ lò xo trong khuon khó co calu.

Đê xác định các kich thước lò xo, dùng hai phưong trinh xuât phát từ điéu kiẹn bên và điếu kiẹn chuyên vị. Tuy nhiên, vo cơ ba đại lự̛̣ng chủ ye̛u chưa biét là đường
kfnh day lò xo d , đường kinh lò xo D vả sơ vòng làm việc n , cho nên khi tính toán thường chọn trước tỷ so đường kinh $\mathrm{c}=\frac{\mathrm{D}}{\mathrm{d}}$, Trong trương hợ cân thioft phail lạp một sơ phương án và tinh toán đé chọn phương án tớt nhất.

Có thể tiến hành thiết ké lo xo xoân ơc trụ chịu kéo hoặc chịu nén theo trinh tự sau :

1. Chọn vật liệu và ứng suất cho phép của lò xo.
2. Chọn tỳ so đương kinh $\mathrm{c}=\frac{\mathrm{D}}{\mathrm{d}}$
3. Theo công thức (19.6) tìm đường kinh dây d và đơi chiếu xem trị só c đã chọn co phù̀ hợp khơng.
4. Tính so vòng làm việc $n$ [theo công thức (19-7)].
5. Định các kfch thước của 10 x . Dơi với lò xo chịu nén cần kiém nghiệm điêu kiẹn $\frac{H_{o}}{D} \leqslant 3$ (đảm bào tính ớn định của lò $x o$ ).

Sau khi định các kfch thước của lò xo, phải xem xét khuôn khơ lò xo có phù hợp vơi chơ đạà trong cơ cấu không, nêu cấn thiết phài chọn lại tỷ sơ đường kính c, vật liẹu v.v... và tính lại.

## 19. 5.2. Thí du

Thiét ké lò xo xoán ơc trụ chịu nén trong nơi trục lò xo xoán óc tru (hinh 18. 9) theo các so liẹu : $\mathrm{F}_{\max }=1000 \mathrm{~N} ; \mathrm{F}_{\text {min }}=700 \mathrm{~N}, \mathrm{x}=5 \mathrm{~mm}$, tåi trong co va dập.

Gidii

1. Chọn vật liẹu làm lò xo là day thép lò xo cấp I. Giâ sử đường kinh day lò xo trong khoảng từ $4 \div 6 \mathrm{~mm}$, láy $\sigma_{b} \simeq 1500 \mathrm{MPa}$ (bảng 19.2). Ững suát xoán cho phép (theo bảng 19.4)

$$
[\tau]=0,3 \sigma_{\mathrm{b}}=0,3 \cdot 1500=450 \mathrm{MPa}
$$

2. Chọn $\mathrm{c}=\mathrm{D} / \mathrm{d}=5$, theo bảng 19.1 lay $\mathrm{k}=1,29$.
3. Theo công thức (19-6) tính đường kinh day

$$
d \geqslant 1,6 \sqrt{\frac{1,29.1000 .5}{450}}=6 \mathrm{~mm}
$$

Láy $\mathrm{d}=6 \mathrm{~mm}$. Như vây đường kính d tìm được cūng phù hợ với giả thiết d d tên Dừng kinh lo xo.

$$
\mathrm{D}=\mathrm{cd}=5.6=30 \mathrm{~mm}
$$

4. Tinnh so vòng làm việc $n$.

Só vòng làm việc cưa lò wo [công thức (19-7)]

$$
\mathrm{n}=\frac{5 \cdot 8 \cdot 10^{4} \cdot 6}{8 \cdot 5^{3}(1000-700)} \simeq 8,5 \text { vòng }
$$

5. Định các kich thước khác.

So vòng thựe té của lo xo

$$
n_{0}=n+1,5=10 \text { vòng }
$$

Chuyển vị lớn nhá̛t của lo xo (kẻ̛ từ khi chưa chịu tải đên khi chịu $\mathrm{F}_{\text {max }}$ ), tính theo công thức (19-3)

$$
\lambda=\frac{8 \cdot 1000 \cdot 30^{3} \cdot 8,5}{8 \cdot 10^{4} \cdot 6^{4}} \simeq 17,7 \mathrm{~mm}
$$

Bưac của vòng lò xo khi chưa chịu tải [công thức (19-12)]

$$
t=\frac{6+1,2 \cdot 17,7}{8,5}=8,5 \mathrm{~mm}
$$

Chiếu cao lò xo lúc chưa chịu tải [công thức (19-13) và (19-11)]

$$
H_{0}=(10-0,5) 6+8,5(8,5-6) \approx 78 \mathrm{~mm}
$$

6. Kiểm nghiẹm tỷ so $\frac{\mathrm{H}_{\mathrm{o}}}{\mathrm{D}}$

$$
\frac{\mathrm{H}_{\mathrm{o}}}{\mathrm{D}}=\frac{78}{30}=2,6<3
$$

Nhu vạy 10 xo khong bị mát of định
Cuơi cùng phài xét xem kich thước lo no đực thiết ké ra có thich họp đơi vơi nới trục không. Nêu khơng thích hợ phải chọn lại tỷ so đương kính $c$, vạt liệu v.v... và tính lại.

## TÀ̀ LIẸU THAM KHẢO

1. Nguyễn Trọng Hiệp. Chi tiết máy, NXB Đại học và THCN, tập 1 và tập 2, 1969.
2. Бирчер И.А. и др. Расчёт на прочность деталей машин М. : Машиностроение, 1979.
3. Иванов М.Н. Детали Машин. М. : Высшая школа, 1984.
4. Иосилевич Г.Б Детали машин. : Машиностроение, 1988.
5. Кочаев В.П. Расчеты на прочность при напряжениях, переменных во времени. М. : Машинострение, 1977.
6. Кудряцев В.Н. Детали машин Л. : машиностроение, 1980.
7. Орлов П.И. Основы конструирования, М. : Мошиностроение, 1977.
8. Решетов Д.Н. Детали машин М. : Машистрение, 1974.

## MUC LUUC

Chrong 12. TRUYEN DONG XICH
12.1. Khái niẹm chung ..... 3
12.2. Các loả truyến đơng và đía xích ..... 4
12.3. Các thong sóf hình học chính ..... 8 ..... 8
12.4. Co học truyển động xích ..... 10
12.5. Tính truyển đônng xích ..... 13
12.6. Trinh tư thiét ke. Thí du ..... 16 ..... 16
Churong 13. TRUYÊN DONG DAI
13.1. Khái niẹm chung ..... 18
13.2. Các loại đai và bánh đai ..... 19
13.3. Các thông só hình học chính ..... 25
13.4. Co học truyên động đai ..... 26
13.5. Tính truyén aông dai ..... 32
 ..... 39
Chtrong 14. TRUYEN DÔNG ViT -DAI ÓC
14.1. Khái niêm chung ..... 42
14.2. Tính truyên dợng vit - đai $\sigma c$ ..... 44
14.3. Thi du ..... 46
Phăn thư tut
TRUC, O TRUC, KHÓP NÓI VA LÒ XO
Chrorng 15. TRUC
15.1. Khǎi niêm chung ..... 48
15.2. Các dạng hơng và vật liệu trục ..... 50
15.3. Tïnh đô bén cùa truc ..... 52
15.4. Tïnh đ̣̂ cúng cưa truc ..... 58
15.5. Tinh toán dao dông của trục ..... 60
15.6. Thí dụ ..... 62
Chrong 16 O TRUOT
16.1. Khái niẹm chung ..... 66
16.2. Ma sát và bôi tron $\hat{\delta}$ inựt ..... 67
16.3. Vât liẹu boi tron ..... 73
16.4. Kêt cáu ó̀ trựt và vạt lị̂u lót ó ó. ..... 75
16.5. Tinh ò truot ..... 81 ..... 81
16.6. Trinh tu tính toán ó trự̛t boi tron ma sát ướt. Thí dụ. ..... 85
Churong 17. Ó LAN
17.1. Khăi nięm chung ..... 87
17.2. Các loąi ó tăn chinh ..... 91
17.3. Lục và ứng suất trong ó̉ lăn ..... 94
17.4. Dợng học và động lục học ó lăn ..... 96 ..... 96
17.5. Tính toán ờ lăn ..... 98 ..... 98
17.6. Két cર́á gơi đす̛ ó lăn ..... 105
17.7. Thi du ..... 108
Chuơng 18. KHỐP NÓI
18.1. Khái niẹm chung ..... 110
18.2. Nơi true chặt ..... 111
18.3. Nó tгие bù ..... 112
18.4. Nới trụ đàn hờ ..... 116
18.5. Ly hơp ..... 120
18.6. Ly hơp ti̛ dọng ..... 126
Churong 19. LÒ XO
19.1. Khái niệm chung ..... 131
19.2. Lò xo xoắn $o c$ trụ chịu kéo và chịu nén ..... 132 ..... 132
19.3. Lo xo xoắn ó trụ chịu xoắn ..... 137
19.4. Vậ liệu lò xo và û́ng suât cho phép ..... 138
19.5. Trinnh tự thiér ké lo xo xoân ớc trụ. Thí dụ ..... 139
Tải liẹu tham khào ..... 142
Mue Iuc ..... 143

Chịu trâch nhiẹ̀m xuất bán:
Chủ tịch HDQT kiêm Tông Giám đốc NGÔ TRÂN ÁI Phó Tởng Giám đốc kiêm Tổng biên tập : NGUYỄ QUÝ THAO

Biên tạp làn dau:<br>NGUYEN VAN MẠU<br>Biên tâp tái bàn:<br>NGUYEN THI HIEN<br>Trình bày bia :<br>PHAM NGQC TỚI<br>Che bdn:<br>PHÒNG CHE BÁN (NXB GIAOO DỤC)

CHI TIÉT MÁY - TÂP HAI
Må số: 7B043T6-CNĐ
In 2.000 bản, khô $19 \times 27 \mathrm{~cm}$ tại Công ty Cổ phẩn In TT Hué, 57 Bà Triệu - Hué. Số in: 1331. Số đăng kí KHXB: 05-2006/CXB/2-1880/GD. In xong và nộp lưu chiểu tháng 3 năm 2006.

1. Tự động điểu khiển các quá trình công nghệ
2. Nguyên lí máy - Tập một
3. Nguyên lí máy - Tập hai
4. Chi tiết máy - Tập một
5. Chi tiết máy - Tập hai
6. Thiết kế chi tiết máy

Trần Doãn Tiến
Đinh Gia Tường (chủ biên)
Đinh Gia Tưòng (chủ biên)
Nguyễn Trọng Hiệp
Nguyễn Trọng Hiệp
Nguyễn Trọng Hiệp
Nguyễn Văn Lẩm
7. Tính toán thiết kế hệ dẫn động cơ khí - Tập một Trịnh Chất Lê Văn Uyển
8. Tính toán thiết kế hệ dẫn động cơ khi - Tập hai Trịnh Chất Lê Văn Uyển
9. Máy canh tác nông nghiệp
10. Máy thu hoạch nông nghiệp
11. Độ tin cậy trong sửa chữa ôtô - máy kéo

Nguyễn Văn Muốn (chủ biên)
Phạm Xuân Vượng
Nguyễn Nông
Hoàng Ngọc Vinh
12. Li thuyết tính toán máy thu hoạch nông nghiệp Phạm Xuân Vượng
13. Tính toán và thiết kể hệ thống sấy
14. Nguyên lí dộng cơ đốt trong

Trần Văn Phú
15. Lí thuyết động co điêzen

Nguyễn Tất Tiến
Lê Viết Lượng
Ban dọc có thét tim mua tai các Công ti Sách - Thiết bị truờng học ở các dịa phrong hoạc các Cưa hàng cuia Nhà xuát bän Giáo dục:
Tại Hà Nọi: 81 Trần Humg Đạo, 57 Giảng Vō, 232 Tây Sou, 23 Tràng Tiền, 25 Hàn Thuyên Tại Đà Nẫng: 15 Nguyễn Chí Thanh
Tại Thành phố Hồ Chi Minh: 231 Nguyễn Văn Cừ, 240 Trần Binh Trọng


[^0]:    Hình 12.12

[^1]:    - Nanômét ký hiệu là $\mathrm{nm}, 1 \mathrm{~nm}=10^{-9} \mathrm{~m}$.

[^2]:    - Dới vơi mỡi mác gang xím, các trỉ số ỏ hàng dưới dùng trong trương hợp vận tởc thấp.

[^3]:    - Ở dây chi xét truờng họp bơi tron thúy dọng.

[^4]:    * Cūng có khi đã cho trước l và loại dắu bôj tron.

[^5]:    * Cong thức (17-7) tim đực tàng cách xét vận tờc tại điêm tiêp xúc giŭa bi với vòng trong hoặc vòng ngơài. Do đó ta có:

    $$
    D_{w} n_{b}\left(d_{m}-D_{w}\right) n_{1 c}=\left(d_{m}+D_{w}\right) n_{3 c}
    $$

    vớ $n_{1 c}$ - tản sớ quay của vòng trong dới với vòng cách : $n_{3 c}$ - tấn số quay của vòng ngoải đối với vòng cách.

[^6]:    * Nới trục đàn hối cung có khả năng bù lại những sai lệch vế vi trí tương đới giữa các trục, nhưng vì nới trục đàn hối còn có nhiệm vụ chủ yếu là giảm va đập (giảm chấn) cho nên được xem xét riêng (trong mục 18.4)

